Cho tam giác ABC, A= 60 độ, = 80 độ. Tia phân giác của BAC cắt BC tại D.
a) Tính sốđo góc C.
b) Tính số đo của ADB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
Trong ΔABD ta có ∠D1 là góc ngoài tại đỉnh D
∠D1 = ̂B + ∠A1 (tính chất góc ngoài của tam giác)
Trong ΔADC ta có ∠D2 là góc ngoài tại đỉnh D
∠D2 = ̂C + ∠A2 (tính chất góc ngoài của tam giác)
Ta có: ∠B > ∠C (gt); ∠A1 = ∠A2 (gt)
⇒∠D1 - ∠D2 = (B + ∠A1) - (C + ∠A2) = ∠B - ∠C = 20o
Lại có: ∠D1 + ∠D2 = 180o (hai góc kề bù)
⇒∠D1 = (180o + 20o):2 = 100o
⇒∠D1 = (100o - 20o) = 80o
Cho tam giác ABC , tia phân giác của A cắt BC tại D . Biết ADB = 80 độ , B = 1,5C . Tính các góc ABC
BD là phân giác \(\widehat{ABC}\) (gt).
\(\Rightarrow\) \(\widehat{ABD}=\) \(\dfrac{1}{2}\)\(\widehat{ABC}\) \(=\dfrac{1}{2}.60^o=30^o.\)
Mà \(\widehat{ABD}+\widehat{ADB}=\) \(90^o\) (\(\Delta ABD\) vuông tại A).
\(\Rightarrow\) \(\widehat{ADB}=\) \(90^o-30^o=60^o.\)
\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=30^0\)
nên \(\widehat{ADB}=90^0-30^0=60^0\)
a,Do AD nằm trong góc CDB nên ta có:
ADC + ADB = 180do (ke bu)
ADC + 84 = 180
ADC = 96
B, trong tam giác ADC ta có ;
ADC + ACD+CAD = 180 (định lí tổng ba góc trong tam giác)
96 + 40 + CAD =180
CAD =44
vì AD là phân giác của góc CAB nền CAD= BAD=44,ta co : CAD + DAB = CAB
2CAD = CAB
2 . 44 = CAB
88 = CAB
vì ADC là góc ngoài tại đỉnh A của tam giác ADB nen ta co
ADC = DAB + ABD
96 = 44 + ABD
ABD = 52
a, Ta có:A+B+C=180 độ
C=180 độ - A -B
=180độ -60 độ -80 độ
=40 độ
b, ADB =180 độ - 1/2 A- B
=70độ