Cho tam giác ABC cân tại A, E và H là trung điểm của AB và AC
a/ CM tứ giác AEHC là hình thanh
b/ Gọi F là điểm đối xứng của H qua E. CM tứ giác AHBF là hình chữ nhật
c/ Gọi I là trung điểm của AH. CM ba điểm F,I,C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CD/CB=CE/CA
nên DE//AB và DE=AB/2
=>DF//AB và DF=AB
=>ABDF là hình bình hành
Xét tứ giác ABDE có DE//AB
nên ABDE là hình thang
b: Xét tứ giác ADCF có
E là trug điểm chung của AC và DF
góc ADC=90 độ
Do đo: ADCF là hình chữ nhật
c: Vì ABDF là hình bình hành
nên AD cắt BF tại trung điểm của mỗi đường
=>B,I,F thẳng hàng
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành
Bài 3:
a: Xét tứ giác AHBF có
E là trung điểm của AB
E là trung điểm của HF
Do đó: AHBF là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBF là hình chữ nhật
4) Gọi D là trung điểm của CK.
ΔABC cân ở A có AH là đường cao, đồng thời là đường trung tuyến
⇒ CH ⊥ FH; H là trung điểm của BC
⇒ DH là đường trung bình của ΔBCK ⇒ DH // BK.
I là trung điểm của HK ⇒ DI là đường trung bình của ΔCHK
⇒ DI // CH ⇒ DI ⊥ FH.
K là hình chiếu của H lên CF ⇒ HI ⊥ DF
⇒ I là trực tâm của ΔDFH ⇒ FI ⊥ DH ⇒ FI ⊥ BK.
a) diện tích của tam giác ABC là SABC=1/2.AH.BC=1/2.16.12=96 tam giác ABC có M là trung điểm AB N là trung điểm AC nên MN là đường trung bình của tam giác ABC => MN=1/2BC=1/2.12=6 vậy MN=6
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔABC
đề sai
a/ Ta có: EM = MH (E đối xứng với H qua M);
AM = MB (M là trung điểm AB)
H = 900 (AH vuông góc với BC)
=> AHBE là hình chữ nhật
b/ Vì AHBE là hình chữ nhật
=> AE = BH và AE // BH
Mà tam giác ABC cân; AH là đường cao
=> BH = HC
=> AE = HC; AE // HC
=> AEHC là hình bình hành.
c/ Ta có: N là trung điểm AC; M là trung điểm AB => MN là đường trung bình
=> MN // BC mà AH vuông góc BC
=> AH vuông góc MN => AH cắt MN (1)
Mà AEHC là hình bình hành
=> AH cắt CE (hai đường chéo) (2)
Từ (1) và (2) => AH,CE,MN đồng quy
d/ Gọi AH, CE, MN đồng quy tại O
HI // AB cắt CE tại I
Xét hai tam giác AKO và HIO:
=> t/gAKO = t/gHIO
=> AK = HI
HI là đường TB của t/g CKB => HI = 1/2 CK
=> AK = 1/2 CK hay 3AK = AB
hình tự vẽ