tính giá trị biểu thức
\(\frac{2a-5b}{a-3b}với\frac{a}{b}=\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a}{b}=\frac{3}{4}\)\(\Leftrightarrow\)\(\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow\)\(a=3k\)
\(\Rightarrow\)\(b=4k\)
Thay \(a=3k\) và \(b=4k\) vào \(A=\frac{2a-5b}{a-b}\) ta được : \(A=\frac{2.3k-5.4k}{3k-4k}\)
\(A=\frac{6k-20k}{3k-4k}=\frac{k\left(6-20\right)}{k\left(3-4\right)}=\frac{6-20}{3-4}=\frac{-14}{-1}=\frac{14}{1}=14\)
Vậy giá trị của biểu thức \(A=\frac{2a-5b}{a-b}=14\) khi \(\frac{a}{b}=\frac{3}{4}\)
Chúc bạn học tốt ~
TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\) / A-3B
=\(2.\left(\frac{3}{4}\right)-5\)/ 3/4-3
=\(\frac{14}{9}\)
\(10a^2-b^2+ab=0\)
\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)
\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)
\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)
Mà \(b>a>0\Rightarrow5a+3b>0\)
Do đó: \(2a-b=0\Rightarrow2a=b\)
Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
\(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)
\(=0+\frac{9}{5}=\frac{9}{5}\)
Vậy \(A=\frac{9}{5}\)
Chúc bạn học tốt.