Tìm khẳng định đúng trong các khẳng định sau:
( I ) f ( x ) = x + 1 x - 1 liên tục với mọi x ≠ 1
( I I ) f x = sin x liên tục trên R
I I I f x = x x liên tục tại x=1
A. Chỉ (I) đúng.
B. Chỉ (I) và (II).
C. Chỉ (I) và (III).
D. Chỉ (II) và (III).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.
Ta có (III) đúng vì
Khi đó
Vậy hàm số liên tục tại x = 1.
Chọn D.
Ta có (I) đúng vì f(x) = x5 – x2 + 1 là hàm đa thức nên liên tục trên R..
Ta có (III) đúng vì liên tục trên (2; +∞) và nên hàm số liên tục trên [2; +∞)
(!!) sai vì hàm số gián đoạn tại các điểm hàm số không xác định.
+) Ta có (I) đúng vì f ( x ) = x 5 - x 2 + 1 là hàm đa thức nên liên tục trên R
+) Ta có (III) đúng vì liên tục trên (2;+∞) và nên hàm số liên tục trên [2;+∞).
+) (II) sai vì trên khoảng ( -1, 1)hàm số đã cho không xác định nên hàm số không liên tục trên khoảng đó.
Chọn D
Đáp án C
Tập xác định: D = R \ { 1 }
lim x → 1 x - 1 x - 1 = lim x → 1 1 x + 1 = 1 2
Hàm số không xác định tại x= 1. Nên hàm số gián đoạn tại x=1.
Chọn C.
Tập xác định : D = R\ {1}
Hàm số không xác định tại x = 1 Nên hàm số gián đoạn tại x = 1.
Chọn B.
Dễ thấy (I) sai ( với x không thuộc tập xác định thì tại điểm đó hàm số gián đoạn)
Khẳng định (II) là lí thuyết.
Hàm số: liên tục trên khoảng (-3; 3). Liên tục phải tại 3 và liên tục trái tại -3.
Nên liên tục trên đoạn [-3; 3].
- Tập xác định: D = R/ {1}.
- Hàm số không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Chọn C.
- Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.
- Ta có (III) đúng vì
- Khi đó:
- Vậy hàm số
liên tục tại x = 1.
- (I) Sai vì với x < -1 thì hàm số đã cho không xác định nên tại các điểm x 0 < - 1 thì hàm số đã cho không liên tục.
Chọn D.