Tọa độ giao điểm của hai đường thẳng d: x - 3y - 1 = 0; d ' = x = 2 t y = 3 - t là:
A. (1;4)
B. (-1;4)
C. (4;1)
D. (4;-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Tọa độ giao điểm của hai đường thẳng x + y - 5 = 0 và 2x - 3y + 5 = 0 là nghiệm của hệ phương trình:
Gọi M( x; y) là giao điểm của đường thẳng (d) và đường thẳng y= 2
Khi đó; tọa độ điểm M là nghiệm hệ phương trình:
Vậy M( - 3; 2)
Chọn B.
Chọn D.
Tọa độ giao điểm của đường thẳng Δ: 4x - 3y - 26 = 0 và đường thẳng d: 3x + 4y - 7 = 0 là:
Vậy (5;-2).
Chọn B.
Tọa độ giao điểm của 2 đường thẳng d1: 7x - 3y + 16 = 0 và d2: x + 10 = 0 là nghiệm của hệ phương trình:
Vậy giao điểm của hai đường thẳng d1 và d2 là
giao dien khi do x1=x2;y1=y2. roi giai pt tim duoc x;y. tu do tinh duoc h
a, Bán kính: \(R=2\sqrt{5}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)
Giao điểm của d và (C) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm
b, Gọi H là trung điểm AB.
Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)
Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)
\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)
Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)
\(\Rightarrow\widehat{HBI}=30^o\)
Khi đó:
\(IH=d\left(I;\Delta\right)\)
\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)
\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)
\(\Leftrightarrow m=5\pm5\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)
Gọi M( x; y) là giao điểm của 2 đường thẳng (a) và (b) ( nếu có).
Khi đó; tọa độ điểm M là nghiệm hệ phương trình:
Vậy tọa độ giao điểm của 2 đường thẳng đã cho là : M( 1; -1)
Chọn C.
Đáp án: C
Gọi M là giao điểm của d và d’
Vì M ∈ d' ⇒ M(2t; 3-t)
Vì M ∈ d ⇒ 2t - 3.(3 - t) - 1 = 0 ⇔ 2t - 9 + 3t - 1 = 0 ⇔ t = 2 ⇒ M(4;1)