K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Hàm số y = |x + 1|

Nếu x + 1 ≥ 0 hay x ≥ –1 thì y = x + 1.

Nếu x + 1 < 0 hay x < –1 thì y = –(x + 1) = –x – 1. 

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Tập xác định: R

+ Trên (–∞; –1), y = x + 1 đồng biến.

Trên (–1 ; +∞), y = –x – 1 nghịch biến.

Ta có bảng biến thiên :

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số gồm hai phần:

Phần thứ nhất : Nửa đường thẳng y = x + 1 giữ lại các điểm có hoành độ ≥ –1.

Phần thứ hai : nửa đường thẳng y = –x – 1 giữ lại các điểm có hoành độ < –1.

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

3 tháng 7 2017

Hàm số Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 có:

+ Tập xác định D = R.

+ Có Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 nên hàm số đồng biến trên R.

+ Tại x = 0 thì y = 1/2 . 0 – 1 = –1 . Vậy A (0; –1) thuộc đồ thị hàm số.

Tại x = 2 thì y = 1/2 . 2 – 1 = 0. Vậy B (2; 0) thuộc đồ thị hàm số.

Vậy đồ thị hàm số là đường thẳng đi qua hai điểm A (0; –1) và B (2; 0).

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

15 tháng 1 2019

Hàm số Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 có :

+ Tập xác định D = R.

+ Trên (–∞; 0), hàm số y = –x nghịch biến.

Trên (0 ; +∞), hàm số y = x đồng biến.

Bảng biến thiên :

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số gồm hai phần:

Phần thứ nhất: Nửa đường thẳng y = –x giữ lại phần bên trái trục tung.

Phần thứ hai: Nửa đường thẳng y = x giữ lại phần bên phải trục tung.

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

14 tháng 1 2017

Hàm số y = 4 – 2x có:

+ Tập xác định D = R

+ Có a = –2 < 0 nên hàm số nghịch biến trên R.

+ Tại x = 0 thì y = 4 ⇒ A(0 ; 4) thuộc đồ thị hàm số.

Tại x = 2 thì y = 0 ⇒ B(2; 0) thuộc đồ thị hàm số.

Vậy đồ thị hàm số là đường thẳng đi qua hai điểm A(0 ; 4) và B(2; 0).

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

12 tháng 8 2018

y = –x2 + x – 1

+ Tập xác định R

+ Đỉnh A(1/2 ; –3/4).

+ Trục đối xứng x = 1/2.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung: B(0; –1).

Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/2 là C(1 ; –1).

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số :

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

11 tháng 7 2019

y = 2x2 + x + 1

+ Tập xác định: R

+ Đỉnh A(–1/4 ; 7/8).

+ Trục đối xứng x = –1/4.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

 

5 tháng 11 2018

 

 

Do đó, hàm số đã cho nghịch biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số

    y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

22 tháng 3 2017

Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

6 tháng 12 2017

Tập xác định: D = (0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12