Cho tứ diện đều ABCD cạnh bằng a. Khoảng cách d giữa hai đường thẳng AD và BC là:
A . d = a 3 2
B . d = a 2 2
C . d = a 2 3
D . d = a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi O là trọng tâm ∆ABC
Kẻ AM ⊥ AC và MH ⊥ AD
Vì DABC là tứ diện đều => DO ⊥ (ABC)
Vì ∆ABC đều => AO =
Xét ∆DAO vuông tại O
Ta có: DO ⊥ BC và AM ⊥ BC
=> (DAM) ⊥ BC
=> MH ⊥ BC
Lại có MH ⊥ DA
=> MH = d(BC, DA)
Xét ∆DAM, ta có:
DO.AM = MH.AD
⇔ MH = a 2 2
⇔ d(BC, DA) = a 2 2
Đáp án B.
Gọi M,N lần lượt là trung điểm của AD và BC. Ta có ∆ A B D và ∆ A C D đều cạnh bằng a nên B M = C M = a 3 2 ⇒ ∆ M B C cân tại M và MN là đường cao của ∆ M B C ⇒ M N ⊥ B C
Tương tự, ∆ N A D cân tại N nên NM là đường cao của ∆ N A D ⇒ N M ⊥ A D
Suy ra MN là đoạn vuông góc cung của AD và BC.
Vậy d A D ; B C = M N = B M 2 - B C 2 2 = a 3 2 2 - a 2 2 = a 2 2
Tính khoảng cách giữa AD và BC.
● Trong ΔADH vẽ đường cao HK tức là HK ⊥ AD (1)
- Mặt khác BC ⊥ (ADH) nên BC ⊥ HK (2)
- Từ (1) và (2) ta suy ra d(AD, BC) = HK.
● Xét ΔDIA vuông tại I ta có:
● Xét ΔDAH ta có:
Chọn B
Gọi I là trung điểm AB, J là trung điểm CD
Từ AC=AD=BC=BD =>IJ chính là đoạn vuông góc chung của 2 đường thẳng AB và CD
=> IJ = a
Gọi O là điểm cách đều 4 đỉnh => O là tâm mặt cầu ngoại tiếp tứ diện ABCD
=> O nằm trên IJ => Ta cần tính OA
Ta có:
CMR: BC ⊥ (ADH) và DH = a.
● Δ ABC đều, H là trung điểm BC nên AH BC, AD BC
⇒ BC ⊥ (ADH) ⇒ BC ⊥ DH.
⇒ DH = d(D, BC) = a
Đáp án B.
Gọi lần lượt là trung điểm của AD và BC. Ta có ∆ ABD và ∆ ACD đều cạnh bằng a nên
=> ∆ MBC cân tại M và MN là đường cao của ∆ MBC => MN ⊥ BC
Tương tự, ∆ NAD cân tại N nên NM là đường cao của ∆ NAD => NM ⊥ AD
Suy ra MN là đoạn vuông góc cung của AD và BC.
Vậy