Tìm tất cả các cặp số nguyên x,y sao cho x.y = x+y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có xy - 2x + y = 1
x( y - 2 ) + ( y - 2 ) = -1
( x + 1 )( y - 2 ) = -1
Vì x; y nguyên nên x + 1; y - 2 nguyên
Vậy x + 1; y - 2 ϵ Ư( -1 ) = { 1; -1 }
Nếu \(\left\{{}\begin{matrix}x+1=1\Rightarrow x=0\\y-2=-1\Rightarrow y=1\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}x+1=-1\Rightarrow x=-2\\y-2=1\Rightarrow y=3\end{matrix}\right.\)
Vậy cặp số nguyên ( x; y ) cần tìm là ( 0; 1 ) ; ( -2; 3 )
-14 = 7.(-2) = (-2).7 = 2. (-7) = (-7).2
Vì x>y ( 7>-2 ; 2>-7 )
=> x = 7 ; y = -2
hoặc x = 2 ; y = -7
Ta có bảng sau:
x | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y | 1 | 2 | 3 | 6 | -6 | -3 | -2 | -1 |
Theo điều kiện đề bài, ta có:
x=1,2,3,6
y=-6,-3,-2,-1
\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)
Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)
xy=x+y
nên : xy-(x+y)=0
xy-x-y =0
x(y-1)-y =0 suy ra x(y-1)-(y-1)=1
(x-1)(y-1)=1
ta có
X - 1 | -1 | 1 |
|
Y - 1 | -1 | 1 |
|
X | 0 | 2 |
|
Y | 0 | 2 |
|
|
x=0 , y=0
x=2 , y=2
x=0 y=0
x=2 y=2
tick nhé khi nào mk tick lại Phạm Nhật Anh