Cho tam giác ABC vuông tại A có B = 30 0 và BC = 4 cm
a, Quay tam giác đó một vòng quanh cạnh AB. Hãy tính diện tích xung quanh và thể tích của hình tạo thành
b, Tính diện tích toàn phần của hình tạo thành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi quay tam giác ABC một vòng quanh cạnh huyền BC ta được hai hình nón có đáy úp vào nhau, bán kính đường tròn đáy bằng đường cao AH kẻ từ A đến cạnh huyền BC.
Trong tam giác vuông ABC ta có:
Đáp án B
Tam giác ABC vuông tại A có:
sin A B C ⏜ = A C B C ⇒ A C = sin 30 ∘ .2 a = a c os A B C ⏜ = A C B C ⇒ A B = c os 30 ∘ .2 a = a 3 .
Quay Δ A B C quanh trục AB ta được hình nón có bán kính đáy r = A C = a .
=> Diện tích xung quanh hình nón trên là S 1 = π r l = π . a .2 a = 2 π a 2 . Và diện tích mặt cầu đường kính AB là: S 2 = 4 π R 2 = 4 π a 3 2 2 = 3 π a 2 ⇒ S 1 S 2 = 2 π a 2 3 π a 2 = 2 3 .
Xét tam giác ABC vuông tại A có: (ABC) = 60 0 , BC = 8 cm
⇒ AB = BC.cos (ABC) = 8.cos 60 0 = 4 (cm)
AC = BC.sin (ABC) = 8.sin 60 0 = 4 3 (cm)
Diện tích xung quanh của hình nón là
S x q = πrl = π.AB.BC = π.4.8 = 32 ( c m 2 )
Thể tích hình nón là:
Hướng dẫn làm bài:
Trong tam giác vuông ABC, ta có:
AB=BC.sinC=BC.sin300=4.1/2=2(dm)
AC=BC.cosC=BC.cos300=4.√3/2=2√3(dm)
Ta có: Sxq = πRl = π. 2. 4 = 8 π (dm2)
V=1/3 π R2 h=1/3 π.22.2√3=8√3.π/3(dm3)
a, Dễ dàng tính được
AC = 2cm, AB = 2 3 cm và S h n = πAC . BC = 8 π
=> V h n = 1 3 πAC 2 . AB = 8 3 3 π
b, Tính được S t p = 12 πcm 2