Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B, BC = 2a, A'M = 3a với M là trung điểm cạnh BC. Thể tích khối lăng trụ ABC.A'B'C' là
A. 8 a 3 3
B. 8 a 3 3
C. 16 a 3 3 3
D. 4 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với hình lăng trụ đứng ABC.ABC, diện tích tứ giác ABBA bằng 2a^2 và đáy ABC là tam giác vuông cân tại A, ABa. Thể tích khối lăng trụ ABC.ABC có thể tính bằng công thức: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Vì đáy ABC là tam giác vuông cân nên diện tích đáy là \(\frac{1}{2} \times a \times a = \frac{1}{2}a^2\). Chiều cao của lăng trụ chính là cạnh AB, vì tam giác ABa là tam giác vuông cân nên \(AB = \sqrt{2}a\). Do đó, thể tích khối lăng trụ ABC.ABC là: \(V = \frac{1}{3} \times \frac{1}{2}a^2 \times \sqrt{2}a = \frac{\sqrt{2}}{6}a^3\). b) Với hình lăng trụ đứng ABC.ABC, góc giữa (ABC) và (ABC) bằng 60°, ta cũng áp dụng công thức tính thể tích khối lăng trụ: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Diện tích đáy và chiều cao đã được tính tương tự như phần a), ta có thể tính được thể tích khối lăng trụ ABC.ABC.
Phương pháp
- Tính chiều cao A 'H .
- Tính thể tích khối lăng trụ V = S A B C . A ' H
Cách giải:
Tam giác ABC vuông cân đỉnh A cạnh AB = AC = 2a nên BC
Tam giác AHA' vuông tại H nên
Vậy thể tích khối lăng trụ
Chọn B.
Ta có:
• A C = B C . sin 30 0 = a ; A B = B C . cos 30 0 = a 3 .
• V A B C . A ' B ' C ' = B B ' . S A B C = 2 a 3 . 1 2 . a 3 . a = 3 a 3 .
Đáp án D
Ta có: B C 2 = A B 2 + A C 2 − 2 A B . A C cos A = 2 A B 2 − 2 A B 2 cos 120 0 = 3 A B 2 ⇒ A B = A C = a
S A B C = 1 2 . a 2 sin 120 0 = 3 a 2 4
. Thể tích lăng trụ là: V = A A ' . S A B C = 3 a . 3 a 2 4 = 3 a 3 4