Cho 6 quả cầu giống hệt nhau được đánh số từ 1 đến 6. Lấy ngẫu nhiên ra lần lượt 4 quả xếp thành một dãy. Tìm xác suất để tổng các chữ số là 10 và dãy số khác với dãy 1234.
A. 23 360 .
B. 1 15 .
C. 17 360 .
D. 1 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(C_9^3\)
Có 2 cách lấy thỏa mãn: (2 quả số 1, một quả số 3) hoặc (1 quả số 1, hai quả số 2)
\(\Rightarrow C_2^2.C_4^1+C_2^1.C_3^2\) cách
Xác suất: \(P=\dfrac{C_2^2.C_4^1+C_2^1.C_3^2}{C_9^3}=...\)
Không gian mẫu: \(C_{15}^3=455\)
Số cách chọn 3 quả sao cho vừa khác màu vừa khác số:
\(4.4.4=64\)
Xác suất: \(P=\dfrac{64}{455}\)
Chọn B
Số phần tử của không gian mẫu là: .
Gọi A: “ Biến cố lấy đồng thời ngẫu nhiên hai quả cầu sao cho tích của các số trên hai quả cầu chia hết cho 10”.
TH1: Hai quả cầu bốc được có chữ số tận cùng là 0 có C 6 2 (cách).
TH2: Hai quả cầu bốc được có 1 quả cầu có chữ số tận cùng là 0 có (cách).
TH3: Hai quả cầu bốc được có 1 quả cầu có chữ số tận cùng là 5 và 1 quả cầu có chữ số tận cùng là 2,3,6,8 có
Khi đó số phần tử của biến cố A là .
Vậy xác suất của biến cố A là:
Số phần tử của không gian mẫu là
Các trường hợp thuận lợi cho biến cố là
• 2 xanh, 1 vàng, 1 đỏ (Giải thích: Khi bốc mình sẽ bốc bi ít hơn trước tiên. Bốc 2 viên bi xanh từ 4 viên bi xanh nên có cách, tiếp theo bốc 1 viên bi vàng từ 3 viên bi vàng (do loại 2 viên cùng số với bi xanh đã bốc) nên có cách, cuối cùng bốc 1 viên bi đỏ từ 3 viên bi đỏ (do loại 2 viên cùng số với bi xanh và 1 viên cùng số với bi vàng) nên có cách)
Suy ra số phần tử của biến cố là
Vậy xác suất cần tính
Chọn C.
Chọn đáp án C
Các trường hợp thuận lợi cho biến cố là
§ (Giải thích: Khi bốc mình sẽ bốc bi ít hơn trước tiên. Bốc 2 viên bi xanh từ 4 viên bi xanh nên có cách, tiếp theo bốc 1 viên bi vàng từ 3 viên bi vàng (do loại 2 viên cùng số với bi xanh đã bốc) nên có C 3 1 cách, cuối cùng bốc 1 viên bi đỏ từ 3 viên bi đỏ (do loại 2 viên cùng số với bi xanh và 1 viên cùng số với bi vàng) nên có C 3 1 cách).
Chọn D
Chọn ngẫu nhiên một quả trong 30 quả có 30 cách. Vậy n ( Ω ) = 30.
Gọi A là biến cố: “lấy được quả cầu màu xanh”.
Ta có n(A) = 20 => P(A) = 2 3
Gọi B là biến cố: “lấy được quả cầu ghi số lẻ”.
Ta có n(B) = 15 => P(B) = 1 2 .
Số quả cầu vừa màu xanh vừa ghi số lẻ: 10 (quả).
Xác suất để lấy được quả cầu vừa màu xanh vừa ghi số lẻ:
Xác suất để lấy được quả cầu màu xanh hay ghi số lẻ:
Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa
Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).
Đáp án A
n Ω = A 6 4 = 360 Xét x , y , z , t ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 và x + y + z + t = 10
Giả sử
x < y < z < t ⇒ 4 x < 10 ⇒ x < 5 2 ⇒ x ≤ 2
và
y ≥ x + 1, z ≥ x + 2, t ≥ x + 3
Ta chọn được x = 1, y = 2, z = 3, t = 4 nên số hoán vị của 4 phần tử 4 ! loại đi 1234 còn lại 4 ! − 1 = 23 dãy. Vậy P = 23 360