tìm GTNN của các biểu thức sau
\(A=x^4+3x^2+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(x-1\right)^2\ge0\)
Dấu " = " xảy ra :
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(Min_A=0\Leftrightarrow x=1\)
b) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow B=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_B=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
c) Ta thấy : \(x^4\ge0\)
\(x^2\ge0\)
\(\Leftrightarrow C=x^4+3x^2+2\ge2\)
Dấu " = " xảy ra ;
\(\Leftrightarrow x=0\)
Vậy \(Min_C=2\Leftrightarrow x=0\)
d) \(D=x^2+4x-100\)
\(\Leftrightarrow D=x^2+4x+4-104\)
\(\Leftrightarrow D=\left(x+2\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(Min_D=-104\Leftrightarrow x=-2\)
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
A = x2+ 3x+ 7
=x2 + 2*x*3/2+9/4 + 19/4
=(x+3/2)2 +19/4
ta có (x+3/2)2>0 nên (x+3/2)2+ 19/4>hoặc=19/4
=> AMin khi x+3/2=0
=>x=-3/2
x^4 >/ 0
3x^2 >/ 0
=>x^4+3x^2+2 >/ 2
vậy Amax=2
dấu "=" xảy ra<=>x=0