Số cách sắp xếp 6 học sinh ngồi vào 6 trong 10 ghế trên một hàng ngang là:
A. 6 10
B. 6 !
C. A 10 6
D. C 10 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Sử dụng các quy tắc đếm cơ bản.
Cách giải:
Vì có 10 ghế nên bạn thứ nhất có 10 cách xếp.
Bạn thứ hai có 9 cách xếp.
Bạn thứ ba có 8 cách xếp.
Bạn thứ tư có 7 cách xếp.
Bạn thứ năm có 6 cách xếp.
Bạn thứ sáu có 5 cách xếp.
Như vậy có: 10.9.8.7.6.5 = A 10 6 cách xếp
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
a) Có 2 cách xếp.
Bạn A có 6! cách.
Bạn B có 6! cách.
Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.
b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.
Chọn 1 học sinh B đối diện A có 6 cách.
Cứ chọn liên tục như vậy ta được:
\(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)
cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường nhau.
Chọn A
Xếp 6 học sinh có 6! cách xếp.
Giữa 6 học sinh có 5 khoảng trống.
Xếp 3 thầy giáo A, B, C vào 5 khoảng trống trên có: A 5 3 cách.
Vậy số cách xếp thỏa mãn yêu cầu là: 6!. A 5 3 = 43200 cách.
Đáp án C
Số cách sắp xếp 6 học sinh vào một bàn dài có 10 chỗ ngồi là số chỉnh hợp chập 6 của 10 phần tử. Vậy số cách sắp xếp là: A 10 6
Đáp án B
Số cách xếp 10 học sinh vào 10 ghế là: 10!
4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4
Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.5.5! = 3600 cách xếp
Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp
Nếu Huyền ở vị trí N2 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 4 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.4.5! = 2880 cách xếp
Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp
Vậy có 2(3600 + 2880) = 12960 cách xếp thỏa mãn đề bài
⇒ p = 12960 10 ! = 1 280
Đáp án C
Phương pháp:
Sử dụng các quy tắc đếm cơ bản.
Cách giải:
Vì có 10 ghế nên bạn thứ nhất có 10 cách xếp.
Bạn thứ hai có 9 cách xếp.
Bạn thứ ba có 8 cách xếp.
Bạn thứ tư có 7 cách xếp.
Bạn thứ năm có 6 cách xếp.
Bạn thứ sáu có 5 cách xếp.
Như vậy có: 10.9.8.7.6.5 = A 10 6 cách xếp