Cho hình chóp S.ABC có SBC và ABC đều là tam giác đều cạnh a. Cho SA = a 3 2 Khoảng cách từ S đến mặt phẳng (ABC) bằng:
A. a 3 3
B. a
C. 3 a 4
D. a 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi I là trung điểm BC. Ta chứng minh được hai mặt phẳng
Kẻ A H ⊥ B C và A H ⊥ S I . Khi đó A H ⊥ S B C ⇒ d A , S B C = A H
Ta có A I = a 3 2 (do ∆ A B C đều cạnh a)
và
S B A B C = S B A ^ = 60 o ⇒ S A = A B . tan 60 = a 3
Vậy d A S B C = A H = S A . A I S A 2 + A I 2 = a 15 5
Đáp án A
Đáp án C
Ta chứng minh được hai mặt phẳng (SAI) (ABC) cùng vuông góc với nhau. Gọi O là hình chiếu của S lên AI
suy ra SO ⊥ (ABC)
Ta có AI =SI = a 3 2 =SA => ∆ S A I đều =>SI = SA . a 3 2 = 3 a 4