Tìm a để các hàm số f ( x ) = 4 x + 1 - 1 a x 2 + ( 2 a + 1 ) x k h i x ≠ 0 3 k h i x = 0 liên tục tại x = 0.
A. 1 2
B. 1 4
C. - 1 6
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=\frac{x+2}{x-1}\)
\(f\left(x\right)=\frac{1}{4}\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{4}\)
\(\Leftrightarrow4\left(x+2\right)=x-1\)
\(\Leftrightarrow4x+8=x-1\)
\(\Leftrightarrow4x-x=-1-8\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-3\)
Vậy x = -3 thì hàm số y = f(x) = \(\frac{1}{4}\)
b) \(f\left(x\right)=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để f(x) nguyên thì \(\frac{3}{x-1}\)nguyên
hay \(3⋮\left(x-1\right)\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(x-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(2\) | \(0\) | \(4\) | \(-2\) |
Vậy \(x\in\left\{2;0;4;-2\right\}\) thì f(x) nguyên
a) Ta có: f(x) = 1/4
=> \(\frac{x+2}{x-1}=\frac{1}{4}\)
=> \(4\left(x+2\right)=x-1\)
=> 4x + 8 = x - 1
=> 4x - x = -1 - 8
=> 3x = -9
=> x = -3
b) Ta có: \(f\left(x\right)=\frac{x+2}{x-1}=\frac{\left(x-1\right)+3}{x-1}=1+\frac{3}{x-1}\)
Để f(x) có giá trị nguyên <=> \(3⋮x-1\) <=> \(x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng :
x - 1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vậy ...
Bài 1:
a: f(0)=1
f(2)=-3x2+1=-6+1=-5
f(-2)=-3x2+1=-5
f(-1/2)=-3x1/2+1=-3/2+1=-1/2
b: f(x)=-3
=>-3|x|+1=-3
=>-3|x|=-4
=>|x|=4/3
=>x=4/3 hoặc x=-4/3
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}a\cdot\left(-4\right)+b=-3\\\dfrac{1}{2}a\cdot0+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\b=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=0\end{matrix}\right.\)
Vậy: f(x)=-3
b: f(1)=f(2)=f(-2)=f(-1)=-3
c: Đặt y=4
=>f(x)=4
=>-3=4(vô lý)
- Ta có:
→ Hàm số không liên tục tại x = 0.
Chọn C.