K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

5 tháng 9 2021

a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)

   \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)

5 tháng 9 2021

a)\(\Leftrightarrow\)\(x^2-4x-21=0\)

\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)

\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)

\(\Leftrightarrow\)\((x-7)(x+3)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)

b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)

\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)

\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)

6 tháng 5 2023

Đề y/c gì em?

a: =7/35*18/9+3/25

=2/5+3/25

=13/25

b: =1/3+4/3*5/2

=1/3+20/6

=1/3+10/3

=11/3

30 tháng 6 2021

\(a,\Leftrightarrow x^2+10x-25=0\)

( Không biết có nhầm đề không ;-; )

\(b,\Leftrightarrow\left(\left(x+2\right)+2\right)^2=0\)

\(\Leftrightarrow\left(x+4\right)^2=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy ...

30 tháng 6 2021

\(a,x^2+10x=25< =>x^2+10x-25=0\)

\(< =>x^2+10x+25-50=0\)

\(< =>\left(x+5\right)^2-\left(\sqrt{50}\right)^2=0\)

\(< =>\left(x+5+\sqrt{50}\right)\left(x+5-\sqrt{50}\right)=0\)

\(=>\left[{}\begin{matrix}x=\sqrt{50}-5\\x=-\sqrt{50}-5\end{matrix}\right.\)

b, \(\left(x+2\right)^2+4\left(x+2\right)+4=0\)

\(< =>x^2+4x+4+4x+8+4=0\)

\(< =>x^2+8x+16=0\)

\(< =>\left(x+4\right)^2=0< =>x=-4\)

21 tháng 8 2021

a) \(A=\left(5-x\right)\left(5+x\right)-x\left(4-x\right)-25\\ =25-x^2-4x+x^2-25\\ =-4x\)

b) \(B=\left(x^2+1\right)\left(x+1\right)-\left(x+1\right)^3\\ =x^3+x+x^2+1-x^3-3x^2-3x-1\\ =-2x^2-2x\)

c) \(\left(x+y-2\right)^2-2\left(x+y-2\right)\left(y+x\right)+\left(x+y\right)^2\)

\(=x^2+y^2+4+2xy-4y-4x-2\left(xy+y^2-2y+x^2+xy-2x\right)+x^2+2xy+y^2\)

\(=x^2+y^2+4+2xy-4y-4x-2\left(2xy+y^2-2y+x^2-2x\right)+x^2+2xy+y^2\)

\(=x^2+y^2+4+2xy-4y-4x-4xy-2y^2+4y-2x^2+4x+x^2+2xy+y^2\)

\(=4\)

21 tháng 8 2021

a) \(A=\left(5-x\right)\left(5+x\right)-x\left(4-x\right)-25=25-x^2-4x+x^2-25=-4x\)b) \(B=\left(x^2+1\right)\left(x+1\right)-\left(x+1\right)^3=\left(x+1\right)\left[x^2+1-\left(x+1\right)^2\right]=\left(x+1\right)\left(x^2+1-x^2-2x-1\right)=\left(x+1\right)\left(-2x\right)\)c) \(C=\left(x+y-2\right)^2-2\left(x+y-2\right)\left(y+x\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)

 

 

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)