K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

2 tháng 10 2021

a) \(\Rightarrow\left(x-1\right)^2=25\)

\(\Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) \(\Rightarrow25x^2+10x+1-25x^2+9=30\)

\(\Rightarrow10x=20\Rightarrow x=2\)

2 tháng 10 2021

a. x2 - 2x + 1 = 25

<=> x2 - 2x - 24 = 0

<=> x2 - 6x + 4x - 24 = 0

<=> x(x - 6) + 4(x - 6) = 0

<=> (x + 4)(x - 6) = 0

<=> \(\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)

b. (5x + 1)2 - (5x - 3)(5x + 3) = 30

<=> 25x2 + 10x + 1 - 25x2 + 9 = 30

<=> 25x2 - 25x2 + 10x = 30 - 1 - 9

<=> 10x = 20

<=> x = 2

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

Bài 2 : Tìm x biết:a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1Bài 3: Sắp xếp rồi làm tính chia:a)   b)  Bài 4: Tìm a sao cho a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5b)    Đa thức 2x3 – 3x2 + x + a chia...
Đọc tiếp

Bài 2 : Tìm x biết:

a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  

c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0

e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4

g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1

Bài 3: Sắp xếp rồi làm tính chia:

a)  

b) 

Bài 4: Tìm a sao cho

a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5

b)    Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.

Bài 5*: Chứng minh rằng biểu thức:

A = x(x - 6) + 10 luôn luôn dương với mọi x.

B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.

Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :

A = x2 – 4x + 2019                                       B = 4x2 + 4x + 11             

C = 4x – x2 +1                                              D = 2020 – x2 + 5x

E =  (x – 1)(x + 3)(x + 2)(x + 6)                   F= - x2 + 4xy – 5y2 + 6y – 17

G = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 7: Cho  biểu thức   M  =

a/   Tìm điều kiện  để biểu thức  M có nghĩa ?

b/   Rút gọn biểu thức M ?               

c/   Tìm x nguyên để  M có giá trị nguyên.

d/   Tìm giá trị của M tại x = -2      

e/   Với giá trị nào của x thì M bằng 5.

Bài 8 : Cho biểu thức : M =

a)     Tìm điều kiện xác định và rút gọn biểu thức

b)    Tính giá trị của M khi x = 1; x = -1

c)     Tìm số tự nhiên x để M có giá trị nguyên.

Bài 9: Cho biểu thức

a/Tìm giá trị của x để giá trị của biểu thức C được xác định.  

b/Tìm x để C = 0.  

c/ Tính giá trị của C biết |2x -1| = 3

 

d/ Tìm x để C là số nguyên âm lớn nhất.                  

1

Bài 2: 

a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

=>-13x=26

hay x=-2

b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)

c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

hay \(x\in\left\{-5;2\right\}\)

10 tháng 12 2021

Chia nhỏ ra ik ạ

10 tháng 12 2021

\(\left(2x+3\right)\left(2x-3\right)-4x\left(x+5\right)=4x^2-9-4x^2-20x=-20x-9\)

\(5x\left(x-3\right)+\left(x-2\right)^2=5x^2-15x+x^2-4x+4=6x^2-19x+4\)

\(x\left(x+2\right)-\left(x-3\right)\left(x+3\right)=x^2+2x-\left(x^2-9\right)=x^2+2x-x^2+9=2x+9\)

 

1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)

\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)

\(=\dfrac{1}{2}x^3+x^2-15x-18\)

2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)

\(=4x^3+6x^2-6x^2-9x+10x+15\)

\(=4x^3+x+15\)

3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)

\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)

\(=3x^5-x^4+5x^3+10x^2+26x-5\)

4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)

\(=\left(x^2-1\right)\left(x-2\right)\)

\(=x^3-2x^2-x+2\)

Bài 2:

a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)

\(=2x^3+6x\)

b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

\(=27x-55\)

a: =>9x^2+12x+4-9x^2+12x-4=5x+38

=>24x=5x+38

=>19x=38

=>x=2

e: =>x^3+1-2x=x^3-x

=>-2x+1=-x

=>-x=-1

=>x=1

f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1

=>12x-9=3x+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

=>-3x+3=3x-9

=>-6x=-12

=>x=2