K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Ta có:817-279-913=328-327-326=326.32-326.3+326=326.(32-3-1)=326.5=324.32.5=324.45 chia hết cho 45

=>đpcm

10 tháng 1 2016

\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}.\left(3^4-3^3-3^2\right)=3^{24}.45\)

Chia hết cho 45 

5 tháng 4 2016

817-279-913

=(34)7-(33)9-(32)13

=328-327-326

=326(32-31-30)

=324.9.5

=324.45 chia hết cho 45

Vậy 817-279-913 chia hết cho 45

13 tháng 6 2017

giai thich giup minh : \(^{3^{26}}\) x (\(3^2\) -\(3^1\)-\(3^0\))

6 tháng 11 2016

15000000000

8 tháng 11 2016

A= 328-327-326= 326(32-3-1)=326.5 chia hết cho 5, mà  A chia hết cho 9 nên A chia hết cho 45

27 tháng 10 2017

Chứng minh rằng:

\(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+2^2\right)\)

\(=2^{10}.7\) \(⋮\) 7

Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7

27 tháng 10 2017

Chứng minh rằng:

\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)

\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)

\(=36.3^n+12.3^n\)

\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N

Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N

\(81^7-27^9-9^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{24}\cdot9\cdot5⋮45\)

6 tháng 8 2021

\(\Rightarrow3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45⋮45\)