Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sin x trên đoạn − π 2 ; π 3 lần lượt là
A. − 1 2 ; − 3 2
B. − 3 2 ; − 1
C. − 3 2 ; − 2
D. − 2 2 ; − 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f′(x) < 0 nên và f’(x) > 0 trên ( π /2; 5 π /6] nên hàm số đạt cực tiểu tại x = π /2 và f CT = f( π /2) = 1
Mặt khác, f( π /3) = 2 3 , f(5 π /6) = 2
Vậy min f(x) = 1; max f(x) = 2
f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]
f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)
f′(x) = 0
⇔
Ta có: f(0) = 0,
Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2
Đáp án A
Ta có: y = 2 s i nx+cos 2 x
= 2 sin x + 1 − 2 sin 2 x → t → s inx y = f x = − 2 t 2 + 2 t + 1.
Với x ∈ 0 ; π ⇒ t ∈ 0 ; 1 .
Xét hàm số f t = − 2 t 2 + 2 t + 1 trên 0 ; 1 có f ' t = − 4 t + 2.
Ta có: f ' t = 0 ⇔ t = 1 2 .
Tính f 0 = 1 ; f 1 2 = 3 2 ; f 1 = 1.
Vậy M = 3 2 m = 1 ⇒ 2 M + m = 4.
Đáp án B
Cách 1: Tư duy tự luận
Xét hàm số f x = sin x 1 + cos x trên 0 ; π
Đạo hàm f ' x = cos x 1 + cos x − sin 2 x = 2 cos 2 x + cos x − 1 ;
f ' x ⇔ cos x = − 1 cos x = 1 2 ⇔ x = π + k 2 π x = ± π 3 + k 2 π k ∈ ℤ
Do x ∈ 0 ; π nên x = π 3 ; x = π .
Ta có
f 0 = f π = 0 ; f π 6 = 3 3 4
Vậy
M = max 0 ; π f x = 3 3 4 ; m = min 0 ; π f x = 0
Cách 2: Sử dụng máy tính cầm tay
Quan sát bảng giá trị, ta thấy
M = max 0 ; π f x ≈ 1,295... ≈ 3 3 4 ; m = min 0 ; π f x = 0
Đáp án là B