K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

\(sin\left(\dfrac{\pi}{3}+x\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{3}{2}+sin\left(\dfrac{\pi}{3}+x\right)\in\left[\dfrac{1}{2};\dfrac{5}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{1}{2}\\y_{max}=\dfrac{5}{2}\end{matrix}\right.\)

16 tháng 4 2017

9 tháng 7 2018

Đáp án A

1 tháng 7 2021

a)\(-1\le sinx\le1\)

\(\Leftrightarrow1\ge-sinx\ge-1\)

\(\Leftrightarrow4\ge3-sinx\ge2\) \(\Leftrightarrow16\ge\left(3-sinx\right)^2\ge4\)\(\Leftrightarrow17\ge\left(3-sinx\right)^2+1\ge5\)

\(\Leftrightarrow17\ge y\ge5\)

\(y_{min}=5\Leftrightarrow sinx=1\)\(\Leftrightarrow\)\(x=\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

\(y_{max}=17\Leftrightarrow\)\(sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

b)\(y=\left(sin^2x+cos^2x\right)^2-2.sinx^2cos^2x\)\(=1-\dfrac{1}{2}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{1}{2}.sin^22x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow1\ge1-\dfrac{1}{2}.sin^22x\ge\dfrac{1}{2}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{2}\)

\(y_{min}=\dfrac{1}{2}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=-1\\sin2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

c)\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1-3sin^2x.cos^2x=1-\dfrac{3}{4}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{3}{4}.sin^22x\ge-\dfrac{3}{4}\)

\(\Leftrightarrow1\ge1-\dfrac{3}{4}.sin^22x\ge\dfrac{1}{4}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{4}\)

\(y_{min}=\dfrac{1}{4}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

Vậy...

1 tháng 7 2021

a, Đặt \(t=sinx\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=\left(3-t\right)^2+1=t^2-6t+10\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(1\right)=5\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(-1\right)=17\)

b, \(y=sin^4x+cos^4x=1-2sin^2x.cos^2x=1-\dfrac{1}{2}sin^22x\)
Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{1}{2}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{2}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

c, \(y=sin^6x+cos^6x\)

\(=sin^4x+cos^4x-sin^2x.cos^2x\)

\(=1-3sin^2x.cos^2x\)

\(=1-\dfrac{3}{4}sin^22x\)

Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{3}{4}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{4}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

1 tháng 9 2021

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

Tham khảo:

23 tháng 5 2017

a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).

23 tháng 5 2017

b) \(y=2-\sqrt{cosx}\) xác định khi \(0\le cosx\le1\) .
Giá trị lớn nhất của \(y=2-\sqrt{cosx}=2-\sqrt{0}=2\) khi \(cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=2-\sqrt{cosx}=2-\sqrt{1}=1\) khi \(cosx=1\Leftrightarrow x=k2\pi\).

12 tháng 2 2019

NV
20 tháng 9 2021

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))