Tìm tất cả các giá trị của m để hàm số y = ln - x 2 + m x + 2 m + 1 xác định với mọi x ∈ 1 ; 2 .
A. m ≥ - 1 3
B. m ≥ 3 4
C. m > 3 4
D. m < - 3 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2 ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2 .
⇔ m > x 2 − 1 x + 2 = g x ∀ x ∈ 1 ; 2 ⇔ m > M ax 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó lim x → 2 f x = 3 4 . Vậy m ≥ 3 4 là giá trị cần tìm.
Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)
\(\Leftrightarrow mx-2x+2m-3\ge0\)
\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)
\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)
\(\Rightarrow1\le m\le\dfrac{11}{6}\)
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2
<=> –x2 + mx + 2m + 1 > 0 ∀ x ∈ 1 ; 2
X é t g x = x 2 - 1 x + 2 v ớ i x ∈ 1 ; 2 c ó :
g x = x 2 - 1 x + 2 = x - 2 + 3 x + 2
⇒ g ' x = 1 - 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó g(x) đồng biến trên khoảng (1;2)
⇒ m ≥ g 2 = 3 4 là giá trị cần tìm.
Đáp án B
Hàm số xác định với mọi x ∈ ( 1 ; 2 ) ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2
⇔ m x + 2 > x 2 − 1 ∀ x ∈ 1 ; 2 ⇔ m > x 2 − 1 x + 2 ∀ x ∈ 1 ; 2 ⇔ m > M a x 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 với x ∈ 1 ; 2 ta có
g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó g x đồng biến trên khoảng 1 ; 2 ⇒ m ≥ g 2 = 3 4 là giá trị cần tìm
`@TH1: m-1=0<=>m=1`
`=>2x+1 > 0<=>x > -1/2`
`=>m=1` loại
`@TH2: m-1 ne 0<=>m ne 1`
`=>(m-1)x^2-2(m-2)x+2-m > 0 AA x in RR`
`=>{(m-1 > 0),(\Delta' < 0):}`
`<=>{(m > 1),((m-2)^2-(2-m)(m-1) < 0):}`
`<=>{(m > 1),(3/2 < m < 2):}`
`=>3/2 < m < 2`
\(y'=-x^2-2\left(m-2\right)x+m-2\)
Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)
\(\Leftrightarrow1\le m\le2\)
Chọn đáp án B