Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Phương pháp
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.
Cách giải
Ta có:
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.
Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì
Đáp án B
Lấy đối xứng đồ thị hàm số f(x)(x-1) qua trục Ox ta được đồ thị của hàm số f x x - 1 . Từ đồ thị hàm số f x x - 1 ta thấy đường thẳng y = m 2 - m cắt hàm số f x x - 1 tại 2 điểm nằm ngoài [-1;1]
⇔ m 2 - m > 0 ⇔ [ m < 0 m > 1
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2 ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2 .
⇔ m > x 2 − 1 x + 2 = g x ∀ x ∈ 1 ; 2 ⇔ m > M ax 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó lim x → 2 f x = 3 4 . Vậy m ≥ 3 4 là giá trị cần tìm.
Đáp án B
Lấy đối xứng đồ thị hàm số f ( x ) ( x − 1 ) qua trục Ox ta được đồ thị của hàm số f ( x ) x − 1 . Từ đồ thị hàm số f ( x ) x − 1 ta thấy đường thẳng y = m 2 − m cắt hàm số f ( x ) x − 1 tại 2 điểm nằm ngoài [ − 1 ; 1 ] ⇔ m 2 − m > 0 ⇔ m < 0 m > 1