Cho A = 1 + 19 19+ 93 ^ 199 + 1993 ^1994
Chứng minh A không là số chính phương
Ai làm được mình sẽ like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sử dụng nhận xét: Nếu \(n\) là số nguyên mà \(n-1\vdots3\) thì \(n^3-1\vdots9.\) Thực vậy ta có \(n=3k+1\to n^3-1=3k\left(n^2+n+1\right)=3k\left(n^2-1+n-1+3\right)\vdots3\times3=9.\) (Do \(n-1,n^2-1\vdots3\)).
Ta có \(1993^{1194}-1=\left(1993^3\right)^{398}-1\vdots1993^3-1\vdots9,\) do \(1993-1=1992\vdots3.\) Ta cũng có \(19^9-1\vdots18\vdots9\to19^9-1\vdots9.\) Thành thử
\(A=1+19^9+93^{199}+1993^{1194}=3+\left(19^9-1\right)+\left(1993^{1194}-1\right)+93^{199}\) chia cho 9 có dư là 3. Vậy \(A\) chia 9 dư 3. Nếu là A là số chính phương, thì vì A chia hết cho 3 nên A cũng chia hết cho 9. Suy ra A chia 9 dư 0, mâu thuẫn.
Vậy A không phải là số chính phương.
phần này có nè
http://olm.vn/hoi-dap/question/436332.html
http://olm.vn/hoi-dap/question/436332.html
A = 1 + 19^19+93^199+1993^1994 = ......26
=> số trên không phải là số chính phương
Ta có:\(A=1+19^{19}+93^{199}+1993^{1994}\)
Dễ thấy:
\(19^2\equiv1\left(mod10\right)\Rightarrow19^{18}\equiv1\left(mod10\right)\Rightarrow19^{19}\equiv9\left(mod10\right)\)
\(93^4\equiv1\left(mod10\right)\Rightarrow93^{196}\equiv1\left(mod10\right)\Rightarrow93^{199}\equiv7\left(mod10\right)\)
\(1993\equiv3\left(mod10\right)\Rightarrow1993^4\equiv1\left(mod10\right)\Rightarrow1993^{1992}\equiv1\left(mod10\right)\Rightarrow1993^{1994}\equiv9\left(mod10\right)\)
\(\Rightarrow1+19^{19}+93^{199}+1993^{1994}\equiv1+9+7+9\equiv6\left(mod10\right)\)
Cho bạn 1 ý tưởng làm bài này nhưng không khả thi lắm :v
\(A=1+9^{19}+93^{199}+1993^{1994}\)
Ta có :
\(9\text{≡}0\left(mod3\right)\)
\(\Rightarrow9^{19}\text{≡}0\left(mod3\right)\)
\(93\text{≡}0\left(mod3\right)\)
\(\Rightarrow93^{199}\text{≡}0\left(mod3\right)\)
\(1993\text{≡}1\left(mod3\right)\)
\(\Rightarrow1993^{1994}\text{≡}1\left(mod3\right)\)
\(\Rightarrow A=1+9^{19}+93^{199}+1993^{1994}\text{≡}1+0+0+1\text{≡}2\left(mod3\right)\)
Một số nguyên có thể có dạng \(3k;3k+1\)hoặc \(3k+2\)
TH1 : \(\left(3k\right)^2=9k^2\text{≡}0\left(mod3\right)\)
TH2 : \(3k+1\text{≡}1\left(mod3\right)\)
\(\Rightarrow\left(3k+1\right)^2\text{≡}1\left(mod3\right)\)
TH3 : \(3k+2\text{≡}2\left(mod3\right)\)
\(\Rightarrow\left(3k+2\right)^2\text{≡}2^2\text{≡}1\left(mod3\right)\)
Do đó số chính phương nào cũng chia hết cho 3 hoặc chia 3 dư 1.
Mà \(A\text{≡}2\left(mod3\right)\)hay \(A\)chia 3 dư 2 nên A không phải số chính phương.
Vậy ...
không ai giúp mình cả