Cho 50 số tự nhiên, trong đó nếu có 4 số khác nhau thì chúng phải lập được thành 1 tỉ lệ thức. Chứng minh rằng trong 50 số đó:
a) Có nhiều nhất 4 số khác nhau
b) Có 13 số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử có 5 số tự nhiên khác nhau:
aVới 4 số a,b,c,d ta chỉ có tỉ lệ thức ad=bc(ko có ab=cd hay ac=bd)
với 4 số a,b,c,e cũng vậy
khi ấy ae=bc=ad nên e=d(do e,d>0)dẫn đến vô lí.
vậy chỉ có nhiều nhất là 4 số khác nhau.
Câu b giả sử chỉ có nhiều nhất 12 số bằng nhau.
Từ câu a ta có số các số lớn nhất có thể là 12*4=48(số)
(có 12 số=a,12số=b,...) nhưng 48<50 dẫn đến vô lí.
Vậy có ít nhất 13 số
Ta chứng minh trong 2013 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.
Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\) là 5 số khác nhau bất kì. Không mất tính tổng quát ta giả sử :
\(a_1< a_2< a_3< a_4< a_5\left(1\right)\)
Theo bài ra ta có : \(a_1a_2=a_3a_4\left(2\right)\)
Theo (1) không xảy ra \(a_1a_2=a_3a_4\) hoặc \(a_1a_3=a_2a_4\)
Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\) thì \(a_1a_5=a_2a_3\left(3\right)\)
Từ (2) và (3) suy ra \(a_4=a_5\).Mâu thuẫn.
Vậy trong 2013 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà \(2013=4.503+1\)
Do đó trong 2013 số tự nhiên dương đã cho luôn tìm được ít nhất \(503+1=504\) số bằng nhau.
Bạn vào link này đi, có câu trả lời rồi đó
http://olm.vn/hoi-dap/question/348918.html
Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được
Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5
Theo đề bài ta có
Xét 4 số a1;a2;a3;a4
a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay a1.a3=a2.a4) (1)
Xét 4 số a1;a2;a3;a5
a1.a5=a2.a3 (2)
Từ (1) và (2) suy ra a4=a5(không thỏa mãn)
Suy ra chỉ có 4 số khác nhau trong đó
Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng
****
giả sử có 5 số tự nhiên khác nhau:
aVới 4 số a,b,c,d ta chỉ có tỉ lệ thức ad=bc(ko có ab=cd hay ac=bd)
với 4 số a,b,c,e cũng vậy
khi ấy ae=bc=ad nên e=d(do e,d>0)dẫn đến vô lí.
vậy chỉ có nhiều nhất là 4 số khác nhau.
Câu b giả sử chỉ có nhiều nhất 12 số bằng nhau.
Từ câu a ta có số các số lớn nhất có thể là 12*4=48(số)
(có 12 số=a,12số=b,...) nhưng 48<50 dẫn đến vô lí.
Vậy có ít nhất 13 số