Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau (hình hộp như vậy còn được gọi là hình hộp thoi). Chứng minh rằng AC ⊥ B'D'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết các mặt của hình hộp đều là hình thoi.
Ta có ABCD là hình thoi nên AC ⊥ BD
Theo tính chất của hình hộp: BD // B'D', do đó AC ⊥ B'D'.
Chứng minh tương tự ta được AB' ⊥ CD', AD' ⊥ CB'
Hai mặt phẳng (AA'C'C) và (BB'D'D) vuông góc với nhau khi hình hộp ABCD.A'B'C'D'là hình lập phương.
Trước hết dễ thấy tứ giác A'B'CD là hình bình hành, ngoài ra B′C = a = CD nên nó là hình thoi. Ta chứng minh hình thoi A'B'CD là hình vuông. Ta có:
Vậy tứ giác A’B’CD là hình vuông.
Chọn A
Đặt cạnh hình thoi ABCD là 1, chiều cao hình hộp = h (h>0).
Gọi O là giao điểm hai đường chéo AC và BD của hình thoi
Tam giác ABD đều
Ta có
Lại có
Gọi α là góc tạo bởi đường thẳng MN và mặt đáy (ABCD).
Ta có
Phương pháp:
Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).
Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.
Cách giải:
∆ AOD vuông tại O
Thể tích khối hộp là:
Chọn: A
∆ A O D vuông tại O
⇒ O A = A D 2 - O D 2 = a 2 - 3 a 2 2 = a 2 ⇒ A H = 1 2 A O = a 4 ;
AC=2.AO=a và S A B C D = 1 2 . A C . B D
= 1 2 a . a . 3 = a 2 3 2
Do AA'//CC' nên
∠ ( A A ' ; ( A B C D ) ) = ∠ ( C C ' ; A B C D ) = 60 °
Do
A H ⊥ ( A B C D ) ⇒ ∠ ( A A ' ; ( A B C D ) ) = ∠ ( A A ' ; A H ) = ∠ A ' A H = 60 °
∆ A ' A H vuông tại
H ⇒ A ' H = A H . tan A ' A H = a 4 . tan 60 ° = a 3 4
Thể tích khối hộp là V = S A B C D . A ' H
= a 2 3 2 . a 3 4 = 3 a 3 8
Chọn đáp án A.
Từ giả thiết suy ra tứ giác ABCD là hình thoi, do đó AC ⊥ BD
Dễ thấy mặt chéo BDD'B' của hình hộp đã cho là hình bình hành, do đó BD // B′D′. Từ đó, theo bài 3.12 suy ra AC ⊥ B'D'.