K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

26 tháng 8 2016

- Kẻ đường kính BB’

.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C

. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .

Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C

- Cách xác định đường tròn (O’;R) .

Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C

Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

26 tháng 8 2016

Ôi, Tui chưa kịp chép Microsoft Office

15 tháng 2 2019

Đáp án D

Gọi BB’ là đường kính (O).

  T B ' C → : O → O ' ⇒ O O ' / / B ' C (1)

Ta lại có

B’C // AH ( cùng vuông góc BC) (2)

B’A // CH ( cùng vuông góc BA)

 AH = B’C (3)

Từ (1), (2), (3):   O O ' / / A H O O ' = A H =>O’H = OA = R

=> H ∈ (O’,R)

27 tháng 8 2016

Bạn lấy thực hiện phép đối xứng qua \(BC\) thì \(O\) thành \(O'\) thì \(OB=O'B,OC=O'C\) mà \(OB=C=R\) cho nên \(O'B=O'C=R\left(1\right)\)
Ở đây \(R\) là bán kính đường tròn ngoại tiếp \(ABC'\)
, \(H\) thành \(H'\) với \(O\) là tâm đường tròn ngoại tiếp \(ABC\).
Cho nên \(\widehat{HBC}=\widehat{H'BC}\) ( phép đối xứng trực bảo toàn góc) mặt khác 
\(\widehat{HBC}=\widehat{HAC}\) cùng phụ với góc \(\widehat{C}\).
Điều này chứng tỏ \(ACH'B\) là tứ giác nội tiếp hay \(H'\) cũng thuộc \(\left(O\right)\)

Phép đối xứng là phép dời hình cho nên nó bảo toàn khoảng cách cũng có nghĩa 

\(O'H=OH'=R\) (vì \(H\) nằm trên \(\left(O\right)\)) (2)

Từ (1) và (2) ta được tam giác HBC luôn nội tiếp đường tròn \(\left(O'\right)\) bán kính R
do \(O,BC\) và R cố định nên \(O'\) cố định , ta được điều phải chứng minh.

28 tháng 8 2016

trục chứ sao lại "trực" ?

16 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chứng minh thuận:

Đường tròn (O) cho trước, điểm A cố định nên OA có độ dài không đổi.

ΔOBC cân tại O (vì OB = OC bán kính)

IB = IC (gt) nên OI là đường trung tuyến vừa là đường cao

OI ⊥ BC

Góc OIA = 90 °

Đường thẳng d thay đổi nên B, C thay đổi thì I thay đổi tạo với 2 đầu đoạn OA cố định góc góc OIA =  90 ° . Vậy I chuyển động trên đường tròn đường kính OA.

Chứng minh đảo: Lấy điểm I’ bất kỳ trên đường tròn đường kính AO. Đường thẳng AI’ cắt đường tròn (O) tại 2 điểm B’ và C’.

Ta chứng minh: I’B = I’C’.

Trong đường tròn đường kính AO ta có góc OI'A =  90 °  (góc nội tiếp chắn nửa đường tròn)

OI'⊥ B'C'

I'B' = I'C' (đường kính vuông góc với dây cung)

Vậy quỹ tích các điểm I là trung điểm của dây BC của đường tròn tâm O khi BC quay xung quanh điểm A cố định là đường tròn đường kính AO.