Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Kẻ đường kính BB’
.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C
. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .
Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C
- Cách xác định đường tròn (O’;R) .
Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C
Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .
- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .
- A’H’ song song với BC ( vì cùng vuông góc với AH )
- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.
Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’
- Chứng minh IH=IH’ . Thật vậy
Ta có : \(\widehat{A}=\widehat{BCH'}\) ( Góc nội tiếp chẵn cung BH’ ).(1)
Mặt khác : \(\begin{cases}CH\perp AB\\CI\perp AH'\end{cases}\)\(\Rightarrow\widehat{A}=\widehat{BCH}\) (2)
Từ (1) và (2) suy ra : \(\widehat{BCH}=\widehat{BCH'}\)
Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC
- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C
- Kẻ đường kính BB’ .Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định \(\overrightarrow{\Rightarrow AH}=\overrightarrow{B'C}\)
Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H . Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo \(\overrightarrow{v}=\overrightarrow{B'C}\)
- Cách xác định đường tròn (O’;R) . Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : \(\overrightarrow{OO'}=\overrightarrow{B'C}\). Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .
Theo t/c đường tròn, do M là trung điểm BC \(\Rightarrow OM\perp BC\)
Áp dụng định lý Pitago:
\(OM=\sqrt{OC^2-CM^2}=\sqrt{R^2-\left(\dfrac{BC}{2}\right)^2}=3\)
\(\Rightarrow\) Quỹ tích M là đường tròn tâm \(\left(O;3\right)\)
Mặt khác do G là trọng tâm tam giác ABC
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
\(\Rightarrow\) G là ảnh của M qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)
\(\Rightarrow\) Quỹ tích G là ảnh của \(\left(O;3\right)\) qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)
\(\Rightarrow\) Quỹ tích G là đường tròn bán kính \(\dfrac{2}{3}.3=2\)
Nhận xét
Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.
Như vậy: ∠(ACB) = ∠(ADB) = 1v.
a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC
BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)
Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)
Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.
Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))
AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)
Lý luận tương tự, ta có:
BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))
AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)
Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).
b) Ta có ngay O’ là trung điểm BJ
Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ
Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)
c) Ta có (SCD) ∩ (ABCD) = CD.
Gọi M = JK ∩ CD
SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)
SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)
Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.
Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.
d) ΔAIB vuông tại I nên OA = OB = OI
ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).
ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).
Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.
e) Theo chứng minh câu c.
f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).
Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).
Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).
Bạn lấy thực hiện phép đối xứng qua \(BC\) thì \(O\) thành \(O'\) thì \(OB=O'B,OC=O'C\) mà \(OB=C=R\) cho nên \(O'B=O'C=R\left(1\right)\)
Ở đây \(R\) là bán kính đường tròn ngoại tiếp \(ABC'\)
, \(H\) thành \(H'\) với \(O\) là tâm đường tròn ngoại tiếp \(ABC\).
Cho nên \(\widehat{HBC}=\widehat{H'BC}\) ( phép đối xứng trực bảo toàn góc) mặt khác
\(\widehat{HBC}=\widehat{HAC}\) cùng phụ với góc \(\widehat{C}\).
Điều này chứng tỏ \(ACH'B\) là tứ giác nội tiếp hay \(H'\) cũng thuộc \(\left(O\right)\)
Phép đối xứng là phép dời hình cho nên nó bảo toàn khoảng cách cũng có nghĩa
\(O'H=OH'=R\) (vì \(H\) nằm trên \(\left(O\right)\)) (2)
Từ (1) và (2) ta được tam giác HBC luôn nội tiếp đường tròn \(\left(O'\right)\) bán kính R
do \(O,BC\) và R cố định nên \(O'\) cố định , ta được điều phải chứng minh.
trục chứ sao lại "trực" ?