4n+5 và 5n+4 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi ƯCLN(4n+3,5n+2) = d(d ∈ ℕ )
⇒4n+3 ⋮d; 5n+2 ⋮d
⇒ 5.(4n+3)⋮d; 4.(5n+2)⋮d
⇒20n+15 ⋮d; 20n+8 ⋮d
⇒(20n+15-20n-8)⋮d
⇒7 ⋮d
Do đó d ∈ Ư(7)={1;7}
Mà đầu bài cho là (4n+3,5n+2) ≠ 1
⇒d=7
Vậy ƯCLN(4n+3,5n+2) = 7
Gọi d là ƯCLN(4n + 3; 5n + 2) ( d ∈ Z ) Nên ta có :
4n + 3 ⋮ d và 5n + 2 ⋮ d
=> 5(4n + 3) ⋮ d và 4(5n + 2) ⋮ d
=> 20n + 15 ⋮ d và 20n + 8 ⋮ d
=> (20n + 15) - (20n + 8) ⋮ d
=> 7 ⋮ d => d = { ± 1 ; ± 7 }
Vậy ƯC(4n + 3;5n + 2) = { ± 1 ; ± 7 }
Gọi ƯCLN(4n+3;5n+4) là d
\(\Rightarrow\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}}\)
\(\Rightarrow20n+16-\left(20n+15\right)⋮d\)
=> 1 \(⋮\)d
=> d=1 hay ƯCLN(4n+3;5n+4)=1
=> 4n+3 và 5n+4 là 2 số nguyên tố cùng nhay
Gọi \(ƯC\left(4n-5;5n-6\right)=d\)
\(\Rightarrow4n-5⋮d,5n-6⋮d\)
\(\Rightarrow4\left(5n-6\right)-5\left(4n-5\right)⋮d\)
\(\Rightarrow\left(20n-24\right)-\left(20n-25\right)⋮d\)
\(\Rightarrow20n-24-20n+25⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 4n - 5 và 5n - 6 là 2 số nguyên tố cùng nhau.
Gọi ƯCNL(4n+3 ; 5n + 2) = d
Ta có : 4n + 3 chia hết cho d => 5(4n + 3) chia hết cho d
5n + 2 chia hết cho d => 4(5n + 2) chia hết cho d
=> 5(4n + 3) - 4(5n + 2) chia hết cho d
=> (20n + 15) - (20n + 8) chia hết cho d
=> 7 chia hết cho d => 4n + 3 và 5n + 2 ko nguyên tố cùng nhau
=> d ∈ Ư(7)
=> d = 7
=> ƯCLN(4n+3 ; 5n+2) = 7
Đặt ƯCLN( 4n + 3; 5n + 2) = d
=> 4n + 3 chia hết cho d
=> 5n + 2 chia hết cho d
<=> 20n + 15 - 20n - 8 = 7 chia hết cho d hay d\(\in\)Ư(7) = {1;7)
Vì: 4n + 3 và 5n + 2 là 2 số không nguyên tố cùng nhau nên chọn d = 7
Vậy: ƯCLN(4n + 3; 5n + 2) = 7