cho tam giác ABC và điểm O nằm bên ngoài tam giác . lay cac diem A' , B' , C' sao cho O la trung diem cua cac doan thang AA' , BB' ,CC'.
chung minh
a)A'B' = AB
b) tam giác A'B'C' = tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
Bài làm :
1)
Xét 2 ∆ : ∆NAE và ∆NCM có :
+ NA = NC ( Vì N là trung điểm AC )
+ Góc ANE = Góc CNM ( 2 góc đối đỉnh )
+ MN = NE ( Giả thiết )
=> ∆NAE = ∆NCM ( c.g.c)
2)
∆NAE = ∆NCM ( c.g.c) (Chứng minh trên)
=> Góc NAE = Góc NCM
Mà 2 góc này ở vị trí so le trong
=> AE // MC
=> AE // BC
Cũng từ việc chứng minh được ∆NAE = ∆NCM ( c.g.c) ; ta có :
AE = CM
Mà CM = MB = 1/2BC => AE = BM
3)
Ta có :
+ AE = BM ( Chứng minh trên )
+ AE // BM ( Chứng minh trên )
=> Tứ giác AEBM là hình bình hành vì có 2 cặp cạnh đối song song và bằng nhau
=> Các đường chéo cắt nhau tại trung điểm mối đường
Theo đề bài : K là trung điểm AM => K là trung điểm BE
=> 3 điểm B,K,E thẳng hàng
Bạn tự vẽ hình nha
a.
AB = AC (gt)
=> Tam giác ABC cân tại A
AN = NB = \(\frac{AB}{2}\) (N là trung điểm của AB)
AM = MC = \(\frac{AC}{2}\) (M là trung điểm của AC)
mà AB = AC (tam giác ABC cân tại A)
=> AM = MC = AN = NB
Xét tam giác ABM và tam giác ACN có:
AM = AN (chứng minh trên)
A là góc chung
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABM = Tam giác ACN (c.g.c)
Xét tam giác BNC và tam giác CMB có:
BN = CN (chứng minh trên)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b.
MB = ME (M là trung điểm của BE)
NC = NF (N là trung điểm của CF)
mà MB = NC (tam giác BNC = tam giác CMB)
=> ME = NF
ANF = BNC (2 góc đối đỉnh)
AME = CMB (2 góc đối đỉnh)
mà BNC = CMB (tam giác BNC = CMB)
=> ANF = AME
Xét tam giác ANF và tam giác AME có:
AN = AM (chứng minh trên)
ANF = AME (chứng minh trên)
NF = ME (chứng minh trên)
=> Tam giác ANF = tam giác AME (c.g.c)
=> AF = AE (2 cạnh tương ứng)
=> A là trung điểm của FE
c.
AM = AN (chứng minh trên)
=> Tam giác ANM cân tại A
=> \(ANM=\frac{180^0-NAM}{2}\) (1)
Tam giác ABC cân tại A
=> \(ABC=\frac{180^0-BAC}{2}\) (2)
Từ (1) và (2)
=> ANM = ABC
mà 2 góc này ở vị trí đồng vị
=> MN // BC
Xét tam giác ANF và BNC có:
AN = NB (N là trung điểm của AB)
ANF = BNC (2 góc đối đỉnh)
NF = NC (N là trung điểm của FC)
=> Tam giác ANF = Tam giác BNC (c.g.c)
=> FAN = CBN (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AF // BC
mà MN // BC (chứng minh trên)
=> EF // MN // BC
Chúc bạn học tốt ^^