Cho tam giác ABC. Trên đường trung tuyến AM của tam giác đó, lấy hai điểm D và E sao cho AD = DE = EM. Gọi O là trung điểm của đoạn thẳng DE. Khi đó trọng tâm của tam giác ABC là:
A. Điểm D
B. Điểm E
C. Điểm O
D. Cả A, B, C đều sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên đường trung tuyến AM có AD = DE = EM nên AE = 2/3 AM.
Do khoảng cách từ trọng tâm tới một đỉnh của tam giác bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó nên E là trọng tâm của tam giác ABC. Chọn (B) Điểm E.
tự kẻ hình nha
ta có AD+DE+EM=AM mà AD=DE=EM=> AM=3EM=> EM=1/3AM=> AE=2/3AM => E là trọng tâm của tam giác ABC ( khoảng cách từ đỉnh đến trọng tâm bằng 2/3 đường trung tuyến đi qua trọng tâm đó)
Bài làm
Ta có: AD = DE = EM
=> 3AE = 2AM
=> \(\frac{AE}{AM}=\frac{2}{3}\)
Mà AM là đường trung tuyến của tam giác ABC.
Và \(\frac{AE}{AM}=\frac{2}{3}\)( cmt )
=> E là giao điểm của ba đường trung tuyến
Do đóm E là trọng tâm của tam giác ABC ( đpcm )
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại link trên nhé.
a) Xét ΔBDC có
E là trung điểm của BD(gt)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
b) Xét ΔAEM có
D là trung điểm của AE(gt)
DI//EM(cmt)
Do đó: I là trung điểm của AM(Định lí 2 về đường trung bình của tam giác)
hay AI=IM(đpcm)
c) Xét ΔAEM có
D là trung điểm của AE(gt)
I là trung điểm của AM(cmt)
Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)
Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà \(EM=\dfrac{DC}{2}\)(cmt)
nên \(DI=\dfrac{\dfrac{DC}{2}}{2}=\dfrac{DC}{4}\)
hay DC=4DI(Đpcm)
Theo đề bài ta có AD = DE nên C thuộc MD là đường trung tuyến của tam giác AEM (1)
Mặt khác ta có BC = 2CD và BC = CM nên CM = 2CD (2)
Từ (1) và (2) suy ra C là trọng tâm của tam giác AEM.
a: AE+EC=AC
nên AE=15-9=6(cm)
Xét ΔABC có
AD/AB=AE/AC=2/5
Do đó: DE//BC
b: Xét ΔABM có DI//BM
nên DI/BM=AD/AB
=>DI/MC=2/5(1)
Xét ΔACM có IE//CM
nên IE/CM=AE/AC=2/5(2)
Từ (1) và (2) suy ra DI=EI
hay I là trung điểm của DE
Khi đó E là trọng tâm của tam giác ABC (khoảng cách từ đỉnh tới trọng tâm của tam giác bằng 2/3 độ dài đường trung tuyến kẻ từ đỉnh đó).
Chọn đáp án B