K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 2 về đường trung bình của tam giác)

hay AI=IM(đpcm)

c) Xét ΔAEM có 

D là trung điểm của AE(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà \(EM=\dfrac{DC}{2}\)(cmt)

nên \(DI=\dfrac{\dfrac{DC}{2}}{2}=\dfrac{DC}{4}\)

hay DC=4DI(Đpcm)

19 tháng 7 2021

https://hoc24.vn/cau-hoi/.1268710028493

Giúp mình cái này 

 

24 tháng 10 2017

a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.

b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.

c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)

Tương tự, ta được: EM = (1/2)DC (2)

Từ (1) và (2) Þ DC = 4DI

13 tháng 10 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

13 tháng 11 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay DI//EM

Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

Suy ra: AI=IM

Xét ΔAEM có 

D là trung điểm của AD(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

\(\Leftrightarrow EM=2\cdot DI\)

\(\Leftrightarrow DC\cdot\dfrac{1}{2}=2\cdot DI\)

hay DC=4DI(Đpcm)

10 tháng 7 2021

Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và EM=DC2EM=DC2(Định lí 2 về đường trung bình của tam giác)

hay DI//EM

Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

Suy ra: AI=IM

Xét ΔAEM có 

D là trung điểm của AD(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: DI=EM2DI=EM2(Định lí 2 về đường trung bình của tam giác)

⇔EM=2⋅DI⇔EM=2⋅DI

⇔DC⋅12=2⋅DI⇔DC⋅12=2⋅DI

hay DC=4DI(Đpcm)

11 tháng 7 2021

undefined

a) Ta có: \(AD=\dfrac{1}{2}DC\)(gt)

mà \(EC=ED=\dfrac{DC}{2}\)(E là trung điểm của DC)

nên AD=EC=ED

b) Xét ΔCDB có 

M là trung điểm của BC(gt)

E là trung điểm của CD(gt)

Do đó: ME là đường trung bình của ΔCDB(Định nghĩa đường trung bình của tam giác)

Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)(Định lí 2 về đường trung bình của tam giác)

hay ME//ID

Xét tứ giác MEDB có ME//BD(cmt)

nên MEDB là hình thang có hai đáy là ME và BD(Định nghĩa hình thang)

c) Xét ΔAME có 

D là trung điểm của AE(AD=DE, D nằm giữa A và E)

DI//ME(cmt)

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

hay IA=IM(Đpcm)

a) Xét ΔBDC có

E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

\(\Rightarrow\)ME//CD(Định lí 2 về đường trung bình của tam giác)

hay ME//ID

Xét ΔAEM có

D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

nên AI=IM(đpcm)

b) Xét ΔAEM có

D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

\(\Rightarrow DI=\frac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(EM=2\cdot DI\)(1)

Ta có: EM là đường trung bình của ΔDBC(cmt)

nên \(EM=\frac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra \(2\cdot DI=\frac{DC}{2}\)

\(\Leftrightarrow ID=\frac{DC}{2}:2=\frac{DC}{4}=\frac{1}{4}DC\)(đpcm)