Cho tam giác ABC cân tại A. M, N lần lượt là trung điểm của AB, AC. Gọi D đối xứng với K qua N.
a) Chứng minh BMNK là hình chữ nhật
b) Chứng minh ADCK là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AQ và MN=AQ
hay AQNM là hình bình hành
mà \(\widehat{A}=90^0\)
nên AQNM là hình chữ nhật
a: Xét ΔABC có
N là trung điểm của AC
NK//AB
Do đó: K là trung điểm của BC
a: Xét ΔABC có
N là trung điểm của AC
NK//AB
Do đó: K là trung điểm của BC
a: Xét tứ giác AHBK có
M là trung điểm của AB
M là trung điểm của HK
Do đó: AHBK là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBK là hình chữ nhật
b:
Xét tứ giác AKHC có
AK//HC
AK=HC
Do đó: AKHC là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
H là trung điểm của BC
Do đó: NH là đường trung bình
=>NH//AB và NH=AB/2
hay NH//AM và NH=AM
=>AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AC
hay DACE là hình thang
b: Xét tứ giác AFCE có
K là trung điểm của AC
K là trung điểm của FE
Do đó: AFCE là hình bình hành
mà \(\widehat{AEC}=90^0\)
nên AFCE là hình chữ nhật