Nêu phương pháp chứng minh Đường thẳng song song với đường thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh đường thẳng song song với mặt phẳng
- Chứng minh d song song với đường thẳng d’ nằm trong (α) và d không thuộc(α).
- Có hai mặt phẳng song song, bất kì đường nào nằm trong hai mặt phẳng này cũng song song với mặt phẳng kia.
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
- Xét vị trí các cặp góc tạo bởi hai đường thẳng định chứng minh song song với một
- đường thẳng thứ ba (so le, đồng vị…)
- Sử dụng tính chất của hình bình hành.
- Hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.
- Sử dụng tính chất đường trung bình của tam giác , hình thang, hình bình hành .
- Sử dụng định nghĩa hai đường thẳng song song.
- Sử dụng kết quả của các đoạn thẳng tương ứng tỉ lệ để suy ra các đường thẳng song
- song tương ứng.
- Sử dụng tính chất của đường thẳng đi qua trung điểm hai cạnh bên hay đi qua trung
- điểm của hai đường chéo của hình thang.
- sử dụng tính chất hai cung bằng nhau của một đường tròn
- Sử dụng phương pháp chứng minh bằng phản chứng.
1. Xét vị trí các cặp góc tạo bởi hai đường thẳng định chứng minh song song với một đường thẳng thứ ba (so le, đồng vị…)
2. Sử dụng tính chất của hình bình hành.
3. Hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.
4. Sử dụng tính chất đường trung bình của tam giác , hình thang, hình bình hành .
5. Sử dụng định nghĩa hai đường thẳng song song.
6. Sử dụng kết quả của các đoạn thẳng tương ứng tỉ lệ để suy ra các đường thẳng song song tương ứng.
7. Sử dụng tính chất của đường thẳng đi qua trung điểm hai cạnh bên hay đi qua trung điểm của hai đường chéo của hình thang.
8. Sử dụng tính chất hai cung bằng nhau của một đường tròn.
9. Sử dụng phương pháp chứng minh bằng phản chứng.
Câu trả lời:
1. Xét vị trí các cặp góc tạo bởi hai đường thẳng định chứng minh song song với một đường thẳng thứ ba (so le, đồng vị…)
2. Sử dụng tính chất của hình bình hành.
3. Hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.
4. Sử dụng tính chất đường trung bình của tam giác , hình thang, hình bình hành .
5. Sử dụng định nghĩa hai đường thẳng song song.
6. Sử dụng kết quả của các đoạn thẳng tương ứng tỉ lệ để suy ra các đường thẳng song song tương ứng.
7. Sử dụng tính chất của đường thẳng đi qua trung điểm hai cạnh bên hay đi qua trung điểm của hai đường chéo của hình thang.
8. Sử dụng tính chất hai cung bằng nhau của một đường tròn.
9. Sử dụng phương pháp chứng minh bằng phản chứng
1. Xét vị trí các cặp góc tạo bởi hai đường thẳng định chứng minh song song với một đường thẳng thứ ba (so le, đồng vị…)
2. Sử dụng tính chất của hình bình hành.
3. Hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.
4. Sử dụng tính chất đường trung bình của tam giác , hình thang, hình bình hành .
5. Sử dụng định nghĩa hai đường thẳng song song.
6. Sử dụng kết quả của các đoạn thẳng tương ứng tỉ lệ để suy ra các đường thẳng song song tương ứng.
7. Sử dụng tính chất của đường thẳng đi qua trung điểm hai cạnh bên hay đi qua trung điểm của hai đường chéo của hình thang.
8. Sử dụng tính chất hai cung bằng nhau của một đường tròn.
9. Sử dụng phương pháp chứng minh bằng phản chứng.
hứng minh đường thẳng song song với đường thẳng:
Để chứng minh hai đường thẳng song song, ta sử dụng các định lí.
- Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng qui hoặc đôi một song song với nhau.
- Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
- Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
- Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.
- Hai mặt phẳng phân biệt cùng song song với với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Một mặt phẳng cắt hai mặt phẳng song song cho hai giao tuyến song song.
- Sử dụng các phương pháp của hình học phẳng. Tính chất đường trung bình, định lí Ta-lét đảo, cạnh đối hình bình hành…
- Sử dụng tính chất về cạnh bên, cạnh đáy của hình lăng trụ.