Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết: 5 x n y 3 : 4 x 2 y 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^ny^{n+1}:x^2y^5=x^{n-2}.y^{n-4}\)
Để \(x^ny^{n+1}⋮x^2y^5\) thì \(\hept{\begin{cases}n-2\ge0\\n-4\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\Leftrightarrow n\ge4.\)
\(x^4:x^n\Rightarrow0>n\le4\)
\(x^n:x^3\)
\(\Rightarrow n\ge3\)
a) Để \((5x^3-7x^2+x)\) chia hết cho \(3x^n \)
=> \(5x^3;7x^2;x\) phải chia hết cho \(3x^n\)
mà n là số tự nhiên; \(x\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
b) Để \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\)
=> \(13x^4y^3;5x^3y^3;6x^2y^2\) chia hết cho \(5x^ny^n\)
mà n là số nguyên; \(6x^2y^2\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
5 x n y 3 : 4 x 2 y 2 = 5/4 x n : x 2 y 3 : y 2 = 5/4 x n - 2 . y là phép chia hết
Suy ra: n – 2 ≥ 0 ⇒ n ≥ 2