Cho tứ giác ABCD nội tiếp (O), M là điểm chính giữa của cung AB. Nối M với D, M với C cắt AB lần lượt ở E và P. Chứng minh PEDC là tứ giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{C_1}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)
Mặt khác: \(\widehat{E_1}=\dfrac{sđ\stackrel\frown{BM}+sđ\stackrel\frown{AD}}{2}\)
\(=\dfrac{sđ\stackrel\frown{AM}+sđ\stackrel\frown{AD}}{2}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)(Vì M là điểm chính giữa \(\stackrel\frown{AB}\) \(\Rightarrow\stackrel\frown{AM}=\stackrel\frown{BM}\))
\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)
Vì \(\widehat{E_1}+\widehat{E_2}=180^o\Rightarrow\widehat{C_1}+\widehat{E_2}=180^o\) mà 2 góc đối nhau
=> tứ giác PEDC nội tiếp
Theo đề bài ta có : M là điểm chính giữa cung AB nên cung AM = cung MB
Xét đường tròn (O) có:
+) MCD là góc nội tiếp chắn cung DM⇒ˆMCD=\(\frac{1}{2}\)sđ cung DM. (1)
+) ˆAED là góc có đỉnh nằm trong đường tròn chắn cung MB và cung AD
=> ^MCD = \(\frac{1}{2}\)(sđ AD + sđ MB) =\(\frac{1}{2}\)(sđ AD +sđ MA) = \(\frac{1}{2}\)sđ DM (2)
Từ (1) và (2) => ^MCD =^AED=\(\frac{1}{2}\)sđ DM
Xét tứ giác DEPC có : ^MCD =^AED (cmt)
=> đpcm
Ta có \(\widehat{EDF}=\widehat{ECF}\) (chắn hai cung bằng nhau AI và BI của đường tròn (O))
\(\Rightarrow\) Tứ giác CDEF nội tiếp
\(\Rightarrow\widehat{DEF}+\widehat{DCF}=180^0\)
Mà \(\widehat{DCF}+\widehat{DAB}=180^0\) (tứ giác ABCD nội tiếp)
\(\Rightarrow\widehat{DEF}=\widehat{DAB}\)
\(\Rightarrow EF||AB\) (hai góc đồng vị bằng nhau)
Ta có: A E D ^ = 1 2 s đ A D ⏜ + s đ M B ⏜
= 1 2 s đ D M ⏜ = M C D ^ => D E P ^ + P C D ^ = 180 0
=> PEDC nội tiếp