Chứng tỏ rằng 1+3+3^2+3^3+...+3^2014+3^2015 chia hết cho 13.
GIẢI CỤ THỂ CHO MÌNH NHA.MÌNH CẢM ƠN NHIỀU.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (1 + 3 + 3^2) + ....... + (3^2013 + 3^2014+ 3^2015)
=1.13 + ...... + 3^2013.13
=13(1 + 3^3 + ... + 3^2013)
=> chia hết cho 13
\(Y=1+3+3^2+3^3+.......+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)
\(=13+3^3.13+.......+3^{96}.13\)
\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )
Y = 1 + 3 + 32 + 33 + ... + 398
= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )
= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )
= 13 + 33.13 + ... + 396.13
= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
\(\text{Đặt }A=1+3+3^2+...+3^{2015}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+...+3^{2013}.\left(1+3+9\right)\)
\(=13+3^3.13+...+3^{2013}.13\)
\(=13.\left(1+3^3+...+3^{2013}\right)\text{chia hết cho 13}\)
=> A chia hết cho 13 (đpcm).
Bạn nhóm 3 số lại