K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

Bài 1 :

\(A=3^0+3^1+3^2+3^3+...+3^{98}\)

\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )

\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)

Bài 2 :

Theo ý a ta có : 

\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)

\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)

Bài 3 :

Để D chia hết cho 2 thì x chia hết cho 2

DD
23 tháng 10 2021

1\(A=3^0+3^1+3^2+...+3^{98}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).

2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)

\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).

3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)

\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))

Mấy anh chị ơi giúp em tiếp với ạ tại vừa nãy em chưa viết xong mà nhỡ gửi mất rồi nên bây giờ em viết tiếp từ bài 8 ạBài 8: Viết tập hợp sau bằng cách liệt kê các phần tử: A= {x thuộc N / 84 chia hết cho x, 180 chia hết cho x và x>6}Bài 9: Tìm các ƯC lớn hơn 10 của 84 và 140Bài 10: Điền chữ số dấu (*) để được 54* thỏa mãn điều kiện: a)Chia hết cho 2 ; b) Chia hêt cho 5Bài 11: Điền chữ...
Đọc tiếp

Mấy anh chị ơi giúp em tiếp với ạ tại vừa nãy em chưa viết xong mà nhỡ gửi mất rồi nên bây giờ em viết tiếp từ bài 8 ạ

Bài 8: Viết tập hợp sau bằng cách liệt kê các phần tử: A= {x thuộc N / 84 chia hết cho x, 180 chia hết cho x và x>6}

Bài 9: Tìm các ƯC lớn hơn 10 của 84 và 140

Bài 10: Điền chữ số dấu (*) để được 54* thỏa mãn điều kiện: a)Chia hết cho 2 ; b) Chia hêt cho 5

Bài 11: Điền chữ số vào dấu (*) để

a)5*8 chia hết cho 3                        b)6*3 chia hết cho 9

c)43* chia hết cho cả 3 và 5            d)*81* chia hết ch cả 2;3;5;9

(Trong một số có nhiều dấu *, các dấu * không nhất thiết thay bởi chữ số giống nhau)

Bài 12: Tổng (hiệu) sau là số nguyên tố hay hợp số?

a) 3.4.5+6.7      b)7.9.11.13 - 2.3.4.7     c) 3.5.7+11.13.17      d) 16345 + 76541

Bài 13: Tìm số nguyên x. Biết: a) -5<x<0          b) -3<x<3

Bài 14: Chứng tỏ: A= 1+2+2^2+.....+2^2011 chia hết cho 7

Bài 15: Tìm một số tự nhiên nhỏ nhất sao cho số đó chia cho 4 dư 3, chia cho 3 dư 2, chia cho 2 dư 1

2
4 tháng 12 2016

mk chỉ giúp bn một số câu mk biết thui nhé

B8 .

x thuộc N mà 84 và 180 chia hết cho x nên:

 x thuộc ƯC (84 ; 180) và x > 6

ƯCLN (84,180) = 12

a thuộc ƯC (84 ;180) = Ư(12) = { 1;2;3;4;6;12} và x > 6

Suy ra x = 12

B9

Theo như bài trên thì ƯC (84 , 180} > 10 là 12

B10

số cần điền là chữ số 0

4 tháng 12 2016

Cảm ơn các anh chị nhiều ạ. Em cũng xin lỗi vì nó hơi nhiều ạ

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3