Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm
Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có
\(DC^2=GD^2+GC^2\)(3)
Từ (1),(2) và (3) ta có
\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)
\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)
Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\) (5)
Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có
\(ED^2=GD^2+EG^2\) (6)
Từ (4),(5) và (6) ta có
\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)
\(\Rightarrow\text{4BC^2}=100-BC^2\)
\(\Leftrightarrow5BC^2=100\)
\(\Leftrightarrow BC^2=20\)
\(\Leftrightarrow BC=\sqrt{20}\)(cm)
Vậy \(BC=\sqrt{20}cm\)
Xét tam giác ABC : BD-đường trung tuyến
CE-đường trung tuyến
BD cắt CE tại G
=> G - trọng tâm tam giác ABC.
=> BG=2/3 BD
=>CE=2/3 CE
Xét tam giác BGC
=> BG+CG > BC ( BĐT trong tam giác)
=>2/3 BD +2/3 CE > BC
=> 2/3 (BD+CE ) > BC
Thay số : BC=8 cm ta đc :
2/3(BD+CE) > 8cm
=> 3/2 . 2/3 (BD+CE)> 3/2 . 8cm
=> BD+CE > 12cm
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Bài làm
Xét tam giác ABC có:
BD và CE cắt nhau ở G
Mà BD và CE là các đường trung tuyến
=> G là trọng tâm của tam giác ABC
Theo tính chất đường trung tuyến có:
\(\frac{BD}{BG}=\frac{3}{2}\Rightarrow BD=\frac{3}{2}BG\) (1)
\(\frac{CE}{CG}=\frac{3}{2}\Rightarrow CE=\frac{3}{2}CG\) (2)
Cộng (1) vào (2) ta được:
\(BD+CE=\frac{3}{2}BG+\frac{3}{2}CG\)
=> \(BD+CE=\frac{3}{2}\left(BG+CG\right)\)
=> \(BD+CE=\frac{3}{2}\left(BG+CG\right)\)
=> \(\left(BD+CE\right):\frac{3}{2}=BG+CG\)
=>\(\frac{2}{3}\left(BD+CE\right)=BG+CG\) (3)
Xét tam giác GBC có:
BG + CG > BC ( theo bất đẳng thức của tam giác )
=> \(\frac{2}{3}\left(BG+CE\right)>BC\) (4)
Từ (3) và (4) => BD + CE > BC : 2/3
=> BD + CE > 3/2BC
Chả biết mik đúng hay do đề sai. Đã thế lại cho BC mặc dù không cần. Đề sai hay thiếu à ?
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)