Tìm các giá trị của m để hai bất phương trình x < − 2 và x < m 2 + 4 m − 9 2 tương đương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
+) (m + 2)x ≤ m + 1
+) 3m(x - 1) ≤ -x - 1 ⇔ 3mx - 3m + x + 1 ≤ (3m + 1)x ≤ 3m - 1
Hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương khi và chỉ khi hai bất phương trình có cùng tập nghiệm khi đó:
⇔ (m + 1)(3m + 1) = (m + 2)(3m - 1)
⇔ 3 m 2 + m + 3m + 1 = 3 m 2 - m + 6m - 2
⇔ 3 m 2 + m + 3m + 1 - 3 m 2 + m - 6m + 2 = 0
⇔ -m + 3 = 0
⇔ m = 3 (thỏa mãn)
Giải pt (1) :(x+3)(2x+1)=0
=>{x+3=0 / {2x+1=0
=> {x=-3 / {x=-1/2
Để hai pt tương đương thì pt (2) nhận giá trị x=-3 và x=-1/2 .
+)Thay x=-3 vào pt (2) :
(m-4)(-3)^2 - 2(2m+9)(-3) -4 =0
=> (m-4)9 + 6(2m+9) - 4 = 0
=> 9m - 36+ 12m + 54 - 4= 0
=> 21m + 14 = 0
=> 21m = -14
=> m= -2/3
Vậy ...
+) Thay x= -1/2 vào pt (2) :
(m-4)(-1/2)^2 - 2(2m+9)(-1/2) -4 =0
=>1/4(m-4) + 2m +9 - 4 = 0
=>1/4m -1 +2m +9 - 4 =0
=>9/4m +4 =0
=>9/4m = -4
=>m =-16/9
Vậy ...
Tìm được m = 1 hoặc m = -5.