Khi quay tam giác ABC vuông tại A một vòng quanh cạnh góc vuông AC, được một hình nón. Biết rằng ∠(ABC) = 60 0 , BC = 8 cm.Tính diện tích xung quanh và thể tích của hình nón đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn làm bài:
Trong tam giác vuông ABC, ta có:
AB=BC.sinC=BC.sin300=4.1/2=2(dm)
AC=BC.cosC=BC.cos300=4.√3/2=2√3(dm)
Ta có: Sxq = πRl = π. 2. 4 = 8 π (dm2)
V=1/3 π R2 h=1/3 π.22.2√3=8√3.π/3(dm3)
Đáp án B
Tam giác ABC vuông tại A có:
sin A B C ⏜ = A C B C ⇒ A C = sin 30 ∘ .2 a = a c os A B C ⏜ = A C B C ⇒ A B = c os 30 ∘ .2 a = a 3 .
Quay Δ A B C quanh trục AB ta được hình nón có bán kính đáy r = A C = a .
=> Diện tích xung quanh hình nón trên là S 1 = π r l = π . a .2 a = 2 π a 2 . Và diện tích mặt cầu đường kính AB là: S 2 = 4 π R 2 = 4 π a 3 2 2 = 3 π a 2 ⇒ S 1 S 2 = 2 π a 2 3 π a 2 = 2 3 .
Đáp án B
Hình nón có chiều cao AB và bán kính BC. Diện tích xung quanh của hình nón là S = π a .2 a = 2 π a 2
Xét tam giác ABC vuông tại A có: (ABC) = 60 0 , BC = 8 cm
⇒ AB = BC.cos (ABC) = 8.cos 60 0 = 4 (cm)
AC = BC.sin (ABC) = 8.sin 60 0 = 4 3 (cm)
Diện tích xung quanh của hình nón là
S x q = πrl = π.AB.BC = π.4.8 = 32 ( c m 2 )
Thể tích hình nón là: