Có 7 nhà toán học nam, 4 nhà toán học nữ và 5 nhà vật lý nam.Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý.
A.210
B.314
C. 420
D. 213
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có các khả năng sau
- Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam
Số cách chọn: C 7 1 . C 4 1 . C 5 1 = 140 cách
- Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý
Số cách chọn: C 4 1 . C 5 2 = 40 cách
- Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý
Số cách chọn: C 4 2 . C 5 1 = 30 cách
Vậy số cách lập là: 140 + 40 + 30 = 210 cách.
Chọn đáp án A.
Đáp án A.
* Hướng dẫn giải:
+ Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam
Số các để chọn: cách
+ Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý
Số cách chọn: cách
+ Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý
Số cách chọn: cách
Vậy số cách lập là: 210 cách
Đáp án B
Th1 : Số cách chọn ra 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam : 5.3.4 = 60
Th2 : Số cách chọn ra 2 nhà toán học nữ, 1 nhà vật lý nam : C 3 2 . C 4 1 = 12
Th3 : Số cách chọn ra 1 nhà toán học nữ, 2 nhà vật lý nam : C 3 1 C 4 2 = 18
Vậy có số cách chọn là : 90.
Đáp án B
Th1 : Số cách chọn ra 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam : 5.3.4 = 60
Th2 : Số cách chọn ra 2 nhà toán học nữ, 1 nhà vật lý nam : C 3 2 C 4 1 = 12
Th3 : Số cách chọn ra 1 nhà toán học nữ, 2 nhà vật lý nam : C 3 1 C 4 2 = 18
Vậy có số cách chọn là : 90
th1: chọn 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam
có: 5.3.4 = 60 (cách chọn)
th2: chọn 2 nhà toán học nữ, 1 nhà vật lý nam
có: 3C2.4C1 = 12 (cách chọn)
th3: chọn 1 nhà toán học nữ, 2 nhà vật lý nam
có: 3C1.4C2 = 18 (cách chọn)
vậy có tổng cộng 60 + 12 + 18 = 90 cách chọn
a.
Chọn 1 nam từ 9 nam có 9 cách
Chọn 1 nữ từ 3 nữ có 3 cách
\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ
b.
Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách
Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách
\(\Rightarrow C_8^2.C_4^2\) cách lập
c.
Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)
\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách
Chọn C.
Số cách chọn 4 nhà khoa học mà có đủ cả ba lĩnh vực là
Số cách chọn 4 nhà khoa học nam mà có đủ cả ba lĩnh vực là
Số cách chọn 4 nhà khoa học nữ mà có đủ cả ba lĩnh vực là
Vậy số cách lập một ban thư kĩ thỏa mãn yêu cầu là:
Ta có các khả năng sau
Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam
Số cách chọn: cách
Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý
Số cách chọn: cách
Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý
Số cách chọn: cách
Vậy số cách lập là: 210 cách.
Chọn A.