K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Ta có x- 3x+ 1 - m = 0   (1)  là phương trình hoành độ giao điểm giữa hai đồ thị hàm số  y = x3-3x2+1 và y = m  (là đường thẳng song song hoặc trùng với Ox).

Xét y = x3-3x2+1 .

Tính y’ = 3x2- 6x

Ta có

y ' = 0 ⇔ 3 x 2 - 6 x = 0 ⇔

Ta có x = 1 thì y = -1

Số nghiệm của phương trình  chính là số giao điểm của đồ thị y = x3-3x2+1 và đường thẳng y = m .

Do đó, yêu cầu bài toán khi và chỉ khi -3 < m < -1

Chọn C.

21 tháng 2 2018

Ta có x3- 3x2+ 1- m=0   là phương trình hoành độ giao điểm giữa hai đồ thị hàm số

 y= x3- 3x2+ 1  và y= m (là đường thẳng song song hoặc trùng với Ox).

+Xét   y= x3- 3x2+ 1  .

Đạo hàm  y’ = 3x2- 6x

Ta có  y’=0 ⇔ 3x2- 6x=0

 

Khi  x= 1 thì y= -1 

Dựa vào đồ thị, yêu cầu bài toán khi và chỉ khi -3< m< -1 .

Chọn C.

12 tháng 1 2018

Đáp án C

Vẽ đồ thị hàm số y = x 3 − 3 x 2 + 1

Để phương trình (1) có ba nghiệm phân biệt thỏa mãn x 1 < 1 < x 2 < x 3  thì đường thẳng y=m cắt đồ thị hàm số y = x 3 − 3 x 2 + 1  tại ba điểm phân biệt thỏa mãn  x 1 < 1 < x 2 < x 3 ⇔ − 3 < m < − 1.

 

4 tháng 5 2018

Đáp án A

 

Ghi nhớ: Nếu hàm số

liên tục trên đoạn thì phương trình

có ít nhất một nghiệm nằm trong khoảng .

1 tháng 11 2018

NV
11 tháng 9 2021

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

11 tháng 1 2017