Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 4 m 3 + m 2 f 2 x + 5 = f 2 x + 3
Xét hàm và đi đến kết quả
Ta có
Với điều kiện thì phương trình (2) luôn có một nghiệm duy nhất, để phương trình đã cho có 3 nghiệm phân biệt ⇔ (1) có 2 nghiệm phân biệt khác nghiệm của phương trình (2)
Chọn B.
Chọn B
+ Đồ thị hàm số y = | x 3 - 6 x 2 + 9 x - 2 | có được bằng cách biến đổi đồ thị (C) hàm số y = x 3 - 6 x 2 + 9 x - 2
Giữ nguyên phần đồ thị (C) nằm trên trục hoành.
Lấy đồi xứng phần đồ thị của (C) phần dưới trục hoành qua trục hoành.
Xóa phần đồ thị còn lại (C) phía dưới trục hoành.
+ Số nghiệm của phương trình | x 3 - 6 x 2 + 9 x - 2 | = m là số giao điểm của đồ thị hàm số
y = | x 3 - 6 x 2 + 9 x - 2 | và đồ thị hàm số y=m. Để phương trình có 6 nghiệm phân biệt thì điều kiện cần và đủ là 0<m<2.
Để phương trình f(cosx) = m có 3 nghiệm x phân biệt thuộc khoảng ( 0 ; 3 π 2 ] thì phương trình f(cosx) = m phải có hai nghiệm cosx phân biệt, trong đó có 1 nghiệm thuộc (-1;0] và một nghiệm thuộc (0;1)
Dựa vào đồ thị, suy ra m ∈ (0;2)
Chọn B.