K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

x=3;y=4

hoac x=4;y=3

28 tháng 5 2018

\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
Do (7;25) = 1

\(\Rightarrow\)Tồn tại số nguyên dương k thỏa mãn tính chất \(\hept{\begin{cases}x+y=7k\\x^2+y^2=25k\end{cases}}\left(1\right)\)

Áp dụng bất đẳng thức Bunyakovsky, ta có:

\(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow49k^2=50k\)

\(\Leftrightarrow k\le\frac{50}{49}\)

Mà k nguyên dương \(\Rightarrow k=1\)

Thay k = 1 vào hệ phương trình (1), ta có:

\(\hept{\begin{cases}x+y=7\\x^2+y^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+\left(7-x\right)^2=25\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+49-14x+x^2=25\end{cases}\Leftrightarrow}\hept{\begin{cases}y=7-x\\2x^2-14x+24=0\end{cases}}\)

Đến đây, giải phương trình bậc hai theo x (phương trình bên dưới) bằng cách phân tích đa thức thành nhân tử tìm x, sau đó thay x vào biểu thức bên trên tìm y. Đáp án là 2 cặp nghiệm (4;3);(3;4).

27 tháng 2 2018

x=3 y=4 

mình chỉ biết đáp số ko biết cách làm bạn ạ

20 tháng 3 2016

5x+2 = 25y 

27y = 81.3x+4

Đề như vầy hả

Bài 1:

a: Ta có: \(48751-\left(10425+y\right)=3828:12\)

\(\Leftrightarrow y+10425=48751-319=48432\)

hay y=38007

b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)

\(\Leftrightarrow2367-y=1222\)

hay y=1145

Bài 2: 

Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)

\(\Leftrightarrow288:\left(x-3\right)^2=2\)

\(\Leftrightarrow\left(x-3\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

25 tháng 2 2022

a, x ⋮ 25 và x < 100

Vì x ⋮ 25 

nên x ∈ B(25) = { 0;25;50;75;100;... }

Mà x < 100

=> x = { 0 ; 25 ; 50 ; 75 }

 b,5x + 3x = 3^6 : 3^3 .4 + 12

   x.( 5 +3 )= 3^3 . 4 + 12

    x . 8       = 27 . 4 + 12

    x . 8       = 108 + 12

    x . 8       = 120

    x            = 120 : 8

    x            = 15

                                                               ~HT~

\(25-y^2-8.\left(x-2009\right)^2\)

ta thấy vế phải \(8.\left(x-2009\right)^2\ge0\) \(\forall x\)

\(\Rightarrow VT:25-y^2\ge0\)

\(\Rightarrow0\le y^2\le25\)

\(\Rightarrow y^2\in\left\{0;1;4;9;16;25\right\}\)

mà \(8.\left(x-2009\right)^2\) chẵn\(\Rightarrow25-y^2\)chẵn \(\Rightarrow y^2lẻ\)

\(\Rightarrow y^2\in\left\{1;9;25\right\}\)

\(\Rightarrow y\in\left\{1;3;5\right\}\) (do \(y\in N\))

\(TH1:y=1\)

\(\Rightarrow8.\left(x-2009\right)^2=24\)

\(\Leftrightarrow\left(x-2009\right)^2=3\left(koTM\right)\)(do \(x\in N\))

\(TH2:y=3\)

\(\Rightarrow8.\left(x-2009\right)^2=16\)

\(\left(x-2009\right)^2=2\left(koTM\right)\)(do \(x\in N\))

\(TH3:y=25\)

\(\Rightarrow8.\left(x-2009\right)^2=0\)

\(\Rightarrow\left(x-2009\right)^2=0\Rightarrow x=2009\left(TM\right)\)

vậy cặp số \(\left(x,y\right)\) thỏa mãn \(25-y^2-8.\left(x-2009\right)^2\)  là  \(\left(2009;25\right)\)