Rút gọn biểu thức: C = a 2 − a a + a + 1 − a 2 + a a − a + 1 + a + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
\(a.a\ne\pm1\)
\(b.K=\dfrac{1}{a+1}+\dfrac{2}{a^2-1}=\dfrac{a-1}{\left(a-1\right)\left(a+1\right)}+\dfrac{2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{a-1}\)
\(c.K=\dfrac{1}{1-\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)
a) Ta có:
\(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(=-a+b-c+a+b+c\)
\(=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(=0+2b+0\)
\(=2b\)
b) \(A=2b=2.\left(-1\right)=-2\)
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
Câu 2:
Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
Câu 1:
Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=1\)
`T=sqrt{1/(a-b)^2+1/(b-c)^2+1/(c-a)^2}`
`=sqrt{1/(a-b)^2+1/(b-c)^2+1/(c-a)^2+2/((a-b)(b-c))+2/((b-c)(c-a))+2/((c-a)(a-b))-2/((a-b)(b-c))-2/((b-c)(c-a))-2/((c-a)(a-b))}`
`=sqrt{(1/(a-b)+1/(b-c)+1/(c-a))^2-(2(a-b+b-c+c-a))/((a-b)(b-c)(c-a))}`
`=sqrt{(1/(a-b)+1/(b-c)+1/(c-a))^2-0}`
`=sqrt{1/(a-b)+1/(b-c)+1/(c-a))^2}`
`=|1/(a-b)+1/(b-c)+1/(c-a)|`
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Để A nguyên thì x+1-2 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{0;-2;-3\right\}\)
C = a 2 − a a + a + 1 − a 2 + a a − a + 1 + a + 1 ( D K : a ≥ 0 ) C = a ( a ) 3 − 1 a + a + 1 − a ( a ) 3 + 1 a − a + 1 + a + 1 = a ( a − 1 ) − a ( a + 1 ) + a + 1 = a − a − a − a + a + 1 = a - 1 2