K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

`T=sqrt{1/(a-b)^2+1/(b-c)^2+1/(c-a)^2}`

`=sqrt{1/(a-b)^2+1/(b-c)^2+1/(c-a)^2+2/((a-b)(b-c))+2/((b-c)(c-a))+2/((c-a)(a-b))-2/((a-b)(b-c))-2/((b-c)(c-a))-2/((c-a)(a-b))}`

`=sqrt{(1/(a-b)+1/(b-c)+1/(c-a))^2-(2(a-b+b-c+c-a))/((a-b)(b-c)(c-a))}`

`=sqrt{(1/(a-b)+1/(b-c)+1/(c-a))^2-0}`

`=sqrt{1/(a-b)+1/(b-c)+1/(c-a))^2}`

`=|1/(a-b)+1/(b-c)+1/(c-a)|`

5 tháng 6 2021

cậu giúp tớ khá nhiều đấy,cảm ơn cậu

 

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)

d: căn x+2>=2

=>A<=1/2

Dấu = xảy ra khi x=0

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

a: ĐKXĐ: a>=0; a<>4

b: \(M=\dfrac{a\sqrt{a}-a\sqrt{a}+2a-a-2\sqrt{a}}{a-4}=\dfrac{a-2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}}{\sqrt{a}+2}\)

c: Khi a=9 thì \(M=\dfrac{3}{3+2}=\dfrac{3}{5}\)

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)