K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ADC$:

$\frac{1}{DE^2}=\frac{1}{AD^2}+\frac{1}{DC^2}=\frac{1}{6^2}+\frac{1}{8^2}$

$\Rightarrow DE=4,8$ (cm)

Áp dụng hệ thức lượng trong tgv với tam giác $ADF$:

$AD^2=DE.DF$

$6^2=4,8.DF\Rightarrow DF=7,5$ (cm)

$EF=DF-DE=7,5-4,8=2,7$ (cm)

Tiếp tục áp dụng hệ thức lượng trong tgv $ADF$:

$AE^2=DE.DF=4,8.2,7=12,96\Rightarrow AE=3,6$ (cm)

$AF=\sqrt{AE^2+EF^2}=\sqrt{3,6^2+2,7^2}=4,5$ (cm) theo định lý Pitago

$BF=AB-AF=CD-AF=8-4,5=3,5$ (cm)

Áp dụng htl trong tgv với tam giác $ADC$:

$DE^2=AE.CE$

$4,8^2=3,6.CE\Rightarrow CE=6,4$ (cm)

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Hình vẽ:

17 tháng 10 2018

Gọi I là giao điểm của AC và EF.

Xét tam giác ACB có IF // AB nên theo định lý Ta-lét ta có

B F B C = A I A C = A E A D = 4 12 = 1 3 nên BF = 1 3 .BC = 1 3 .15 = 5 (cm)

Đáp án: B

NV
9 tháng 8 2021

Áp dụng định lý Pitago cho tam giác vuông ABC

\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:

\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)

\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

b.

Ta có: \(EC=AC-AE=3,6\left(cm\right)\)

Do AB song song CF, theo định lý Talet:

\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)

\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADF:

\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)

Pitago tam giác vuông BCF:

\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)

Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)

\(\Rightarrow FH=AD=6\left(cm\right)\)

\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

NV
9 tháng 8 2021

undefined