Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:
\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)
\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)
\(\Leftrightarrow DE^2=23.04\)
hay DE=4,8(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:
\(DA^2=DE\cdot DF\)
\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)
Ta có: DE+EF=DF(E nằm giữa D và F)
nên EF=DF-DE=7,5-4,8=2,7(cm)
Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:
\(AD^2=AE^2+DE^2\)
\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)
hay AE=3,6(cm)
Xét ΔAEF vuông tại E và ΔABC vuông tại B có
\(\widehat{BAC}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)
Ta có: AF+FB=AB(F nằm giữa A và B)
nên BF=AB-AF=8-4,8=3,2(cm)
Áp dụng định lý Pitago cho tam giác vuông ABC
\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:
\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)
\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b.
Ta có: \(EC=AC-AE=3,6\left(cm\right)\)
Do AB song song CF, theo định lý Talet:
\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)
\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADF:
\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)
Pitago tam giác vuông BCF:
\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)
Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)
\(\Rightarrow FH=AD=6\left(cm\right)\)
\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:
\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)
\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{32^2}=\dfrac{265}{9216}\)
hay \(DE=\dfrac{96\sqrt{265}}{265}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDEA vuông tại E, ta được:
\(DE^2+EA^2=DA^2\)
\(\Leftrightarrow EA^2=32^2-\left(\dfrac{96\sqrt{265}}{265}\right)^2=\dfrac{262144}{265}\)
hay \(EA=\dfrac{512\sqrt{265}}{265}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDAC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:
\(ED^2=EA\cdot EC\)
\(\Leftrightarrow EC=\dfrac{9216}{265}\cdot\dfrac{265}{512\sqrt{265}}\)
hay \(EC=\dfrac{18\sqrt{265}}{265}\left(cm\right)\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ADC$:
$\frac{1}{DE^2}=\frac{1}{AD^2}+\frac{1}{DC^2}=\frac{1}{6^2}+\frac{1}{8^2}$
$\Rightarrow DE=4,8$ (cm)
Áp dụng hệ thức lượng trong tgv với tam giác $ADF$:
$AD^2=DE.DF$
$6^2=4,8.DF\Rightarrow DF=7,5$ (cm)
$EF=DF-DE=7,5-4,8=2,7$ (cm)
Tiếp tục áp dụng hệ thức lượng trong tgv $ADF$:
$AE^2=DE.DF=4,8.2,7=12,96\Rightarrow AE=3,6$ (cm)
$AF=\sqrt{AE^2+EF^2}=\sqrt{3,6^2+2,7^2}=4,5$ (cm) theo định lý Pitago
$BF=AB-AF=CD-AF=8-4,5=3,5$ (cm)
Áp dụng htl trong tgv với tam giác $ADC$:
$DE^2=AE.CE$
$4,8^2=3,6.CE\Rightarrow CE=6,4$ (cm)
Hình vẽ: