K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Xét tam giác ABC vuông tại A có:

Đáp án cần chọn là: B

29 tháng 4 2020

Mình làm mẫu cho bạn câu a) nhé 

a) Theo định lí Pytago ta có :

BC2 = AB2 + AC2 

152 = AB2 + AC2

AB : AC = 3:4

=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)

\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)

\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)

Ý b) tương tự nhé 

10 tháng 2 2022

thank you

 

25 tháng 1 2017

Xét tam giác ABC vuông tại A có:

Đáp án cần chọn là: B

4 tháng 7 2016

Hình đơn giản nên tự vẽ nhá.

a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144 

=> AC = căn 144 = 12 (cm)

b) Xét tam giác BIA và tam giác BIH:

BAI^ = BHI^ = 90o

IBA^ = IBH^ 

BI chung

=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)

=> BA = BH (2 cạnh tương ứng)

=> Tam giác AHB cân

4 tháng 7 2016

a.Ta có: AB=9cm ; BC=15cm

Theo định lý Py-ta-go: BC2 = AB2 +AC2

=>AC=BC2 - AB2 =152 - 92  = 225-81= 144

AC2 = 144 =>AC=\(\sqrt{144}\)=12cm

b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H

             Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A

 Xét tg BIH và tg ABI có:

  • góc ABI = góc HBI (BI là phân giác góc B)
  •  BI chung

=> BIH = ABI ( cạnh huyền - góc nhọn)

Do đó: AB = BH

mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H

29 tháng 9 2018

tự làm đi cu, dễ vl ra

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12cm

BH=15^2/25=9cm

CH=25-9=16cm

b: Xet ΔABC vuông tại A và ΔDHC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDHC

c: \(\dfrac{S_{ABC}}{S_{DHC}}=\left(\dfrac{BC}{HC}\right)^2=\left(\dfrac{25}{16}\right)^2\)

=>\(S_{DHC}=150:\dfrac{625}{256}=61.44\left(cm^2\right)\)

13 tháng 9 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo đề bài ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo tính chất dãy tỉ số bằng mhau ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

tam giác ABC vuông tại A

Áp dụng định lí pitago vào tam giác ABC ta có:

BC2 = AB2 + AC2 (2)

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

AB2 = 9. 9 = 81 ⇒ AB = 9 cm (vì AB > 0)

AC2 = 16. 9 = 144 ⇒ AC = 12 cm (vì AC > 0)

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc MAC+góc AED=90 độ

=>góc MAC+góc AHD=90 độ

=>góc MAC+góc B=90 độ

=>góc MAC=góc MCA và góc MAB=góc MBA

=>MA=MB=MC

=>M là trung điểm của BC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=20^2/25=16(cm)

AD=12^2/15=144/15=9,6cm

AE=12^2/20=7,2cm

\(S_{ADE}=\dfrac{1}{2}\cdot7.2\cdot9.6=34.56\left(cm^2\right)\)

9 tháng 4 2023

cm bn nha