cho tam giác ABC . Trên nửa mặt phẳng không chứa C có bờ là AB vẽ AD Vuông góc với AB và AD =AB , trên nửa mặt phẳng không chứa B có bờ là AC vẽ đoạn AE vuông góc với AC và AE = AC . Chứng minh rằng BE = CD và BE vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
góc DAB = góc EAC( Vì cùng phụ góc BAC)
AD= AC
AB=AE
Nên tam giác ABD = tam giác AEC
Vây BD = CEb,
b, Ta có: góc NAC = góc ADE ( cmt )
Mà góc NAC + góc DAM = 90 độ nên ADE + góc DAM = 90 độ
Vậy DIA = 90 độ
Áp dụng pytago ta có:
AD2+IE2/DI2+AE2=(AD2+DI2)+(AE2−AI2)/DI2+AE2=1
Bạn tham khảo tạm.
Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K
Dễ dàng ∆ABM = ∆FCM (c.g.c)
=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC
Mà 2 góc này ở vị trí slt.
=> AB // FC.
=>^BAC + ^ACF = 180° (tcp).
Lại có:
^EAC = ^DAB = 90°
=> ^EAC + ^DAB = 180°
=> ^EAB + ^BAC + ^BAC + CAD = 180°
=> ^BAC + ^EAD = 180°
Do đó ^EAD = ^ACF.
Xét ∆ACF và ∆EAD có:
AC = AE (GT)
^ACF = ^EAD
^CF = AD (=AB)
=>∆ACF = ∆EAD (c.g.c)
=> ^CAK = ^AED (2 góc t/ứ)
=> ^CAM+ ^EAM = ^AED + ^EAM
=> ^AED + ^EAM = ^CAE=90°
=> ^AKE = 90°
=> AM vuông góc vs DE
Mà AH vuông góc DE.
=> Đpcm
a) ta có :∠EAC=90o (gt)
∠BAD=90o(gt)
=>∠EAC+∠BAC=∠BAD+∠BAC
=>∠EAB=∠DAC
Xét △ADC và △ABC,có:
AD=AB(gt)
∠CAB=∠EAB(cmt)
AE=AC(gt)
=>△ADC=△ABE(c.g.c)
=>BE=DC(t/ư)